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Sequential Prediction of Individual
Sequences Under General Loss Functions

David Haussler, Jyrki Kivinen, and Manfred K. Warmuth

_Abstract—We consider adaptive sequential prediction of ar- in producing sequential probability assignments for individual
bitrary binary sequences when the performance is evaluated pinary sequences [29], [32], [33], [39]. Hefe is an estimate

using a general loss function. The goal is to predict on each ¢ e propability thaty, = 1, given the previous outcomes
individual sequence nearly as well as the best prediction strategy In thi th, | function is t ithmi
in a given comparison class of (possibly adaptive) prediction ¥1> "> Yt—1- n this case, the loss function is thagarithmic

strategies, calledexperts By using a general loss function, we 10ss function, = L,.¢, which is defined by letting
generalize previous work on universal prediction, forecasting,

and data compression. However, here we restrict ourselves to the Liog(ye: 9t) = —In if 9, =1
case when the comparison class is finite. For a given sequencea d

we define the regret as the total loss on the entire sequence n
suffered by the adaptive sequential predictor, minus the total loss Liog(yt, ) = —In(1 — §y), if 4, =0.
suffered by the predictor in the comparison class that performs

best on that particular sequence. We show that for a large ; ; ; : o
class of loss functions, the minimax regret is eithel©(log N) That is, the loss is the negative logarithm of the probability

or 2(/TTog V), depending on the loss function, whereV is the that_was pr_edicted fog. This_ is closely related_ to the ngmber
number of predictors in the comparison class and is the length  Of bits required to encodg givenyy, ---, 1 in an optimal

of the sequence to be predicted. The former case was shownsequential adaptive coding method based on the sequential
previously by Vovk; we give a simplified analysis with an explicit probability assignments. Other possible loss functions are the
closed form for the constant in the minimax regret formula, and square 0oy (1, ) = (y:—i)?, often used in the literature

give a probabilistic argument that shows this constant is the best . .
possible. Some weak regularity conditions are imposed on the lossON sequential forecasting [9], [13], [16], [36] and taksolute

function in obtaining these results. We also extend our analysis to 10SS Lay,s (v, 9t) = |y: — |, often used in pattern recognition
the case of predicting arbitrary sequences that take real values and computational learning theory [6]-[8], [25], where the

in the interval [0, 1]. termon-lineis used to describe a sequential procedure of this
Index Terms—On-line learning, universal prediction, worst type. The absolute loss can be interpreted as the probability of
case loss bounds, worst case regret. error in predictingy; when you use a randomized strategy of

predictingl with probability 7, and0 with probability 1 — 7,.
In this on-line prediction setup, you play the role of an
adaptive algorithm otearning algorithm which produces the
SSUME that your data consists of a sequesce - -, ¢ predictions for each trial. Nature provides the sequence of out-
of binary outcomeghat is revealed to you one outcome:omes through some unknown processuiriversalor worst
at a time. At each time step drial ¢, after seeing the caseprediction over individual outcome sequences, nothing at
outcomesy:, - - -, yz—1, You mustpredict the next outcome a|| is assumed about the process used by nature to produce
y: by producing a numbeg; € [0, 1]. When the actual next the sequence of outcomes. The performance of the learning
outcomey, is revealed, you then suffer a los$y:, 5:), where ajgorithm is judged in the worst case over all possible outcome
L is a fixedloss function One example of this scenario iSSequenceS of |ength for each?. However, in order to make
the problem nontrivial, one only considers the performance of
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the class of all constant sequential probability assignmenqiediction strategies of the maximum regret over all possible
(memoryless encoding schemes). Then the minimax regoettcome sequences. We call this thamimax regret The exact
for the logarithmic loss is (essentially) the redundancy ahinimax regret depends strongly on the comparison class, and
the adaptive code for, ---, ¥, i.e., the total number of even for simple comparison classes it does not usually have a
bits needed to encode this sequence of outcomes adaptivelge closed-form formula for each loss functiénand length
minus the number of bits that would have been required df play ¢ [6], [10]. So here we focus instead on obtaining good
7 = > yp /£ for all t, which is the best constant predictiorupper and lower bounds for the minimax regret.
for this particular outcome sequence. Extensions of this includeOur upper bounds on the minimax regret are quite general,
the case wheré consists of all Markov predictors of a givenin that they depend only on the numhat of experts in the
order, or all finite-state predictors of a given number of statesmparison class. So they in fact hold for a more challenging
[15], [26], [38]. game in which Nature chooses the (predictions of the) experts
Of course, since the learning algorithm must make ita the comparison class in an adversarial manner, in addition
predictions on-line, it cannot know ahead of time whicko choosing the outcomes. A game of this type was defined and
expert in& will perform best on the sequence of outcomeanalyzed by Cesa-Biancht al. [6] for the absolute loss; here
produced by Nature. Remarkably, however, the work ome extend this analysis to more general loss functions. The
universal prediction, forecasting, and data compression hgsper bounds we obtain on the minimax regret of this more
shown that in many cases the learning algorithm can achiesteallenging game provide upper bounds on the minimax regret
surprisingly small regret, i.e., it can make predictions almost any standard universal prediction game. Our lower bounds
as well as if it knew ahead of time which expert's advice teshow that the leading constants in these general upper bounds
take [2], [4]-[71, [11], [14], [15], [17], [19], [20], [27], [28], cannot be improved. However, the adversary construction in
[30], [31], [33], [35], [37]. In particular, it has been shown thathese lower bounds does not require the full power available to
the Lempel-Ziv algorithm universally achieves quite a smalature in the more challenging game. In particular, the lower
regret when compared to the best finite-state predictor [15].b®unds show that for largey and ¢ there is always a set
more general analysis of universal prediction is given in [33f nonadaptive experts whose (predetermined) predictions for
for a comparison class that is a smooth parametric family, atiches1 to ¢ can be known in advance to the on-line prediction
in more general cases in [28]. Closely related work has alatgorithm, and still this algorithm must suffer minimax regret
been done in the area of mathematical finance, where one sesse to that given in the general upper bound, with respect to
a stock portfolio rebalancing strategy that performs almost & worst case outcome sequence.
well as the best strategy in a given comparison class on anyovk [35] introduced an on-line prediction algorithm that
market [12], [22]. More general decision-theoretic scenariés applicable to all loss functions when the outcomes are
are considered in [1], [10], and [37]. Also related is the workinary. This algorithm can be used to obtain good general
on on-line competitive algorithms in computer science (sepper bounds on the minimax regret. For a large class of loss
e.g., [34]). functions, Vovk proved that for this algorithm, the minimax
In this paper we focus on the case in which the comparisoegret was bounded by, In N, independent of the number
class¢ is finite. Our goal is to develop the most general results of trials, wherecy, is a positive constant determined by
possible for this finite case. Whereas most previous papéhne loss function and N is the number of experts in the
(with the exception of [10], [35], and [37]) have each focusedomparison class. For instance, for the square loss Vovk's
on a single loss function, which has often been different migorithm achieves this bound witty, = 1/2 [35], and for
different disciplines, we give a unified treatment of a verlpgarithmic loss withe;, = 1, when the natural logarithm is
general class of loss functions, including the usual onassed to define the loss functiah [14], [35]. On the other
Whereas in many previous papers, very specific forms for thand, for the absolute logs,;,., Cesa-Bianchet al. [6] have
comparison class are studied, elgh-order Markov models or shown that the best general bounds on the minimax regret that
finite-state predictors of a certain size, here we obtain bountin be obtained ar®(/ log N), and that the best possible
that hold for an arbitrary (finite) set of sequential predictiononstant in this bound approachisy/2 for a large number
mechanisms. They are even allowed to be dependent on eatlof experts, when the natural logarithm is used. Here there
other, in the sense that the prediction of one expeftat trial is a strong dependence on the numieof trials. Slightly
t can depend not only on the previous outcomes --, y:_1  weaker results for the absolute loss were obtained earlier by
but on the predictions of the other experts&nup to and Littlestone and Warmuth [25].
including timet¢ as well. We use the term “experts” instead It is instructive to compare these general results obtained for
of “statistical models” for the predictors in the comparisoa finite comparison class of siZé and logarithmic loss to the
class€ to distinguish this setting from a setting in which thauniversal prediction results of Rissanen and others for smooth
comparison class consists of simpler statistical models.  parametric families of models, which form infinite comparison
The standard universal prediction setting can be viewethsses. Indeed, Rissanen has shown that for the purposes of
as a game between Nature and the learner. Nature selextiversal prediction under logarithmic loss, essentially without
the sequence of outcomes, and the learner makes predictimss of performance, under suitable smoothness conditions one
on-line and suffers some regret, as defined above, after ah replace a continuousdimensional comparison class of
outcomes have been seen. One is interested in the mininmaadels with a finite approximation to this class in which
value of this game, that is, the minimum over all possibithe parameters are given to precision roughfy/¢, where
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£ is the number of data points (trials) [31] (see (27) and the [I. ON-LINE PREDICTION AND LOSS BOUNDS
preceding equation). This gives a finite comparison class Ofyye consider the predictive performance of an on-line learn-
size N = O(¢*/?). Hence in this case, Vovk's bound of

e - Yling algorithm A on a sequence of outcomesg, ---, e,
cr, In N on the minimax regret, wherg, = 1 for logarithmic wherey, € [0, 1] for eachl < ¢ < £. The algorithm’s
loss, gives a bound of roughlgk/2) That o

. OOt ) In £, as obtained by performance is compared to that of the best expert in a
Rissanen, which is optimal apart from the additive ConSta@i’ven seté = {&, -, Ex} of experts, each of which is
supplied only by the deeper argument of Rissanen. an arbitrary on-line prediction strategy. The prediction of the
In t.hIS paper we give asmpllflgd anglygls of Vovk’s generaéxpertgi for the outcomey, is denoted byr; ; and is a real
algorithm which yields an explicit definition of the constanf,;mper in the interval0, 1]. This prediction can depend on

c in the formula above for a wide class of loss functiong,e previous (and current) predictions of the other experts as
L, including most usual loss functions, with the exception Qfe|| as the previous outcomes. The vector of predictions by all

absolute loss. We also provide a probabilistic argument that eyperts for triat, called theprediction vector is defined
shows this is the best constant that can be obtained. Then = (241, -, 2z n). When the algorithm makes its

define another class of loss functions that includes the absol Sditction i € [0, 1] for the outcomey,, we assume that

loss, and prove that there is no general upper bound on a5 access to all previous outcomes, as well as all previous

minimax regret for any loss function in t_his cl_ass t_hat is Sma"‘fnrredictions of the experts, including the predictiansfor the
than ©(y/7 log N). Thus for loss functions in this class, the; rent trialt. This is always true if the algorithm has access

minimax regret will in general depend strongly on the numbgs he previous outcomes and can simulate the predictive

¢ of wials. ) i mechanisms of the experts. However, our upper-bound results
We make some weak regularity assumptions on the 10§84 hold in more general cases in which the algorithm cannot
function. It is possible to construct loss functions that are mjate the experts: see [6] for further discussion. Also, most
neither of our classes, and for which we thus do not know ayyrithms considered in this paper make their predictigns
bounds. It is an open problem to provide nontrivial bound§genendently of the length of the whole trial sequence, but

on the minimax risk that would apply tall loss functions. j, some situations we also consider how the algorithms can
Nevertheless, the classes we define cover such a broad raN98ine-tuned if? is known in advance.

of functions thf’;\t_ we must conclude that _the two asymptotic \ne define the K-expert)trial sequenceas
forms of the minimax regret that are obtainé€¥{log ~N) and
©(v/? log N), are in some sense generic for this problem. S =z, 1), -, (e, o))

Section Il gives a formal description of our framework of
analysis. Our bounds are given in Section Ill-A together witand each paifz;, y,) is atrial. We consider separately the
a discussion of the regularity conditions assumed for the logases ofbinary outcomeswith the outcomesy, either 0 or
function. Section 11I-B restates Vovk’s algorithm and uppert, andcontinuous-valued outcomesith i, any real number
bound proof, simplified for our purposes. The lower-bountiom the interval0, 1]. The performance of the learner at trial
proof, given in Section llI-C, is based on generating theis measured byl.(y;, 4;), where L is aloss functionwith
outcome sequence by a simple randomized adversary, uding rangef0, oc), or sometimeg0, oc]. For binary outcomes
simple randomly defined experts, and showing that already the€ {0, 1} it suffices to consider the functions, and L,
expected regret of the algorithm approaches the worst caldined byLo(9) = L(0, §) and L, (%) = L(1, ).
upper bound. Thus in a sense we see that in our particularE
setting, the average case is almost as difficult as the worst
case. The. proof technique.with a randgmized ad\{ersary WasL . (y, §) = v In (y/9) + (1 — ) In ((1 — y)/(1 — 4)).
used previously by Cesa-Bianc#i al. [6] in the special case
of the absolute loss. By the usual conventio® ln 0 = 0, this gives Lo(y) =

Finally, in Section IV-A we show that for certain loss—1In (1 —4) andL:(§) = —1n ¢ for L = L.,. In the binary
functions, such as the square and logarithmic loss, Vovi¢asey € {0, 1}, the relative entropy loss is better known as
algorithm achieves the same worst case regret even if tihe logarithmic loss
outcomes are allowed to be arbitrary real numbers in theThe square lossL, is defined by
interval [0, 1]. In this case, the logarithmic loss is generalized . .
to therelative entropy lossdefined by Leq(y, 9) = (y = 9)°.

xample 2.1: The relative entropy 10s9..,; is defined by

Hence, for = L., we haveLo(9) = ¢* and Li(§) =
Lent(yes 9¢) = e n(ye/9e) + (1 — ) m (1 —9)/(A—8)). (1 — )
The Hellinger lossLy is given by

Combined with our lower bounds, this shows that the minimax Lu(y, §) = %((, /T—y—1-)? +(Vy— \/5)2),
regret in this case is the same as for binary outcomes. For the

absolute loss, the worst case regret bounds proven for bingtgnce, forL = Ly we have Lo(j) = 1 — /1—% and
outcomes [6], [35] can be achieved with continuous-valuelth () = 1 — /3.

outcomes by using a slightly more complicated algorithm, asThe absolute losd..;,s is given by L..s(y, §) = |y — 4|,
we show in Section IV-B. and we havelo(g)=¢ and L1 (§)=1—74 for L = L,,s. O
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It is worth noting some properties of the loss functions afsual loss functions, the upper bounds can be generalized to
Example 2.1, since these will be important later. In each casdlpw for continuous-valued outcomes € [0, 1].
the functionL, is increasing and.; decreasing iff0, 1], so the The main results are summarized in Section IlI-A. Section
loss L(y, %) increases as the predictignmoves away from 1lI-B gives the algorithm that obtains the upper bounds, and
the outcomey. The functionsl, and L, are differentiable, and the proof that it does so. Both the algorithm and analysis are
by the previous remarkl.;(z) > 0 and L} (z) < 0 for all 2. originally by Vovk [35]; here we are able to simplify them
Except for the absolute loss, the second derivathjgs) and by considering only continuous loss functions. Section I1I-C
LY (z) are positive for allz, which means that errors becomeontains the main lower bound proofs. Finally, in Section Ill-D
progressively more expensive as the difference between the consider some other possibilities for lower bound proofs.
prediction and outcome increases.

Consider now a loss functiof and an on-line prediction o Main Results
algorithmA. Let S = (&1, v1), - - -, (%¢, y¢)) be anN-expert
trial sequence, and let the prediction of the algorithrat trial
t of the sequence& be 7,. We then define

The proofs of our upper and lower bounds require that the
loss function satisfies certain constraints. We first state the
main result with all the necessary restrictions and then discuss

¢ A the meaning of these restrictions. First, given loss functians
Loss (4, S) = > Lyt §) andL, that are twice differentiable, we define a functisiby
t=1
as the loss of the algorithm and S(z) = Lo(2)L1(2) — L1 (2)Lg(z) (3.1)

4
Loss.(&i, S) = > L(yt, x,)
=t _ Li(x)Li(2)? — L1(2)Ly(2)*

and a functionR by

z) = 2

as the loss of théth expert on the sequence We define R(z) S(z) (3.2)
Vi, a(5) = Loss (4, 5) — min Loss. (& 5) We then define a constanf, by

to be theregret or additional lossof the algorithm, i.e., the cr, = sup R(z). (3.3)
amount by which the loss of the algorithm exceeds the loss 0<z<l

of the best expert. We let If S(z) =0 for some0 < z < 1, we writecy, = oo. Our main

VL. a(N, £) result concerns the case whefgis finite. Whency, is finite
— suplV, Z1, 1), s (20, z, € [0, 1]V, and the loss function satisfies certain other conditions, we can
PiVe, alll@, 1) (@e; ye))le: € [0, 1] prove an upper bountiz, 4(V, £) < ¢z In N and show that
ye €40, 1}} the bound is asymptotically tight.

be the worst case regret fod, when the outcomes in an  Thegrem 3.1:Let I be a loss function such thity (0) =
N-expert trial of length? are restricted to be binary. HereLl(l) =0, Lo and L, are three times differentiable if®, 1),
we are formalizing the more challenging game in WhiCQndLg(z) > 0andL{(z) < 0 for 0 < z < 1. Assume that the
Nature is allowed to select both the outcomes and the Ptgsnstant; defined in (3.3) is finite and (=) defined in (3.1)
dictions of the N experts in an adversarial fashion. Finally;q positive for0 < z < 1. Then there is an on-line prediction
we let VL(N, #) = inf4 V 4(N, £) be the smallest regret algorithm A for which
obtainable by an on-line prediction algorithh This is the
minimax value for this more challenging game. The goal of Vi, a(N, ) <cpln N (3.4)
this paper is to study.(N, ¢) for general loss functiong,
and to generalize the results for continuous-valued outcomesids for all v > 1 and# > 1. Further, we have
Yyt € [07 1]

Some general mathematical notation we will need is as VL(N, &) > (e —o(1)) In N (3.5)
follows. We use EX] and VafX] to denote the expected value
and variance of a random variahle If we want to emphasize whereo(1) denotes a quantity that approaciteas ¢ and N
the underlying probability measui®, we write E,.cp[X(x)] approachcc.
and Var,¢ p[X (2)]. The probability of an evenp according
to a probability measur® is denoted byPr,. p[p(z)].

We useN ; to denote the sefl, 2, 3, --- } of the positive
integers andR to denote the set of real numbers.

The algorithm A that obtains the bound (3.4), as well as
the proof of the bound, are already given by Vovk [35]. The
algorithm makes its predictions independently of the lerfgth
of the trial sequence. We give the algorithm and a simplified
proof in Section IlI-B. Note that the lengthof the sequence
does not appear on the right-hand side of (3.4). The lower

We now consider the case of binary outcomes {0, 1}. bound (3.5) is based on a probabilistic proof that is given in
Our results include both upper and lower bounds for theection IlI-C. The lower bound holds also for algorithms that
minimax regret. In Section IV we show how at least for thget knowledge o beforehand.

I1l. BINARY OUTCOMES
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Example 3.2: Consider the loss functions of Example 2.1Therefore,R(z) approaches< as z approache® or 1, and
For these loss functions, we clearly halig{0) = L, (1) =0, ¢ is infinite. Hence, our results give no upper bound for
L{(z) > 0, and L} (z) < 1. For the logarithmic loss we have V. (N, £). However, the denominatd¥(z) is given by

S(z) = 1/(22(1 — 2)) + 1/(2(1 — 2)%) > 0. S(z) = Pla+ 1)(2(1 - 2)) 2

and is hence strictly positive fd¥y < z < 1. Therefore, we
have no lower bound, either. For this loss function it is an
open problem to define any bounds s (N, ¢). O

Further, R(z) is identically 1, and thereforec;, = 1. For
the square loss, we haw(z) = 4 > 0 for all z. Further,
R(») = 22 — 222, and hencec;, = 1/2. For the Hellinger
loss, we have Ignoring the artificially constructed special case of Example
S(z) = (1/8)23/2(1 — 2)~%/2, §H4' our results for specific loss functions are divided based on

e sign of the functiory. For the logarithmic loss, the square

Further, loss, and the Hellinger loss, the valu¥z) is positive for
all z, and Theorem 3.1 applies. For the absolute l¢¥s;)
R(z)=2V1—2z+4 (1 —2)Vz is zero everywhere, and Theorem 3.3 applies. To conclude

dit iahth d h h . imized f this section, we clarify the intuitive meaning of the function
and Itis straightforwar _tlo 25 ow thdt() is maximize 0T s by connecting it to Bayes-optimal predictions in a simple
z = 1/2. Hence,c, = 27*/2. For the absolute losS(z) is probabilistic prediction game

identically 0, soc¢;, = ~ and Theorem 3.1 is not applicable Let ) be a probability measure dio, 1}, with Pr,coly=1]

for the absolute loss. O _ 4. For a prediction: € [0, 1], the expected lossor prob-
For all typical loss functions the conditiongo(0) = ability measure, or for bias g, is
Li(1) =0, Ly(z) > 0,andL)(z) < 1 hold. Thus Theorem 3.1 EycolL(y, )] = (1 — @)Lo(2) + qL1(2).

can be nonapplicable because = ~c, or becauses () < 0

for somez. SinceS(z) = 0impliescz, = oo, these two reasons Here we defin®-oo = 0. For example, for the logarithmic loss
often occur together. In Section I1I-C we prove the followingve haveLo(1) = oo, but the expected loss for predictidnis
lower bounds, which show that if the denominaft) is not defined to b for bias1. For other biases it would be infinite.
always strictly positive, the regrdt;,(IV, ¢) cannot have an A predictionz is Bayes-optimafor biasg if it minimizes the
upper bound that is independent &f expected loss. Note that since we assulgeand L; to be
continuous in a closed interval, the expected loss always has
a minimum value at some. This holds even if we allow
infinite losses. IfLg is increasing and.; decreasing, then the
prediction0 is Bayes-optimal for bia® and the prediction

Theorem 3.3:Let L be a loss function such that and L,
are three times differentiable if0, 1), and L{(z) > 0 and
Li(z) < 0 for all z. Let S be as in (3.1).

1) If S(z) = 0 for some0 < z < 1, we have for bias 1. If a value0 < z < 1 is a local extremum point
/6 for the expected loss, then
VL(N, £) = Q4 log V). 3.6
LN O =RV les ). 39 (1 - OLi(z) +aLi(2) =0. 39)
2) If S(z) < 0 for some0 < z < 1, or there are values F1_ 0 and L 0. this impli
a < b such thatS(z) = 0 for all o < z < b, we have ¢ 7 0and Li(z) # 0, |s/|mp 1es
VL(N, £) = Q(y/{ log N). (3.7) 1—q  L(z) '

The special case of absolute loss was considered by Ce¥gre generally, if eithedq(z) or L’ (z) is nonzero for a given
Bianchi et al. [6]. They show that for the optimal algorithmVvaluez € (0, 1), then there is a unique valuge (0, 1) for
A we haveV;, 4(N, £) = ©(v/Z In N). For the absolute loss, which (3.8) holds, and hence cannot be a Bayes-optimal
the denominato$(z) is 0 for all z. Thus our lower bound (3.7) Prediction for more than one bias. If

generalizes their lower bound for more general loss functions. (1= q)L(2)+ qL!(z) >0 (3.10)
Unfortunately, in the case of general loss functions we know N ) o )
of no corresponding upper bound. holds in addition to (3.8), ther is a local minimum point.

Finally, it is possible that the valuey, is infinite, but the There may be one or more Bayes-optimal predictions for a
denominatorS(z) is positive for allz. We can construct an given bias.
example to show that such behavior is possible, although nong emma 3.5: et L be a loss function such thdt, and L,

of the usual loss functions found in the literature exhibit ityre three times differentiable if0, 1), and Ly(z) > 0 and
For such loss functions the results of this paper have M9 (2) < 0 for all z. Let S be as in (3.1). 1fS(z) > 0 for all z,

implications whatsoever. then for all biase® < ¢ < 1 there is a unique Bayes-optimal
Example 3.4:Define a loss function byLo(z) = (1 — predictionz. If for all biasesq the Bayes-optimal prediction is
2)~* — 1 and Ly(z) = 2= — 1 for some positive valuer. Unique, thenS(z) > 0 for all =, and there is no intervak, b|
We then have with @ < b such thatS(z) = 0 for all z € [a, ].
R(z) = o (z=(1 — 2) + (1 — 2)~%2). The proof of Lemma 3.5 is given in Section IlI-C. We close

a+1 the section by applying Lemma 3.5 to specific loss functions.
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Example 3.6:For the logarithmic, square, and Hellingehave —1In w; ; = nLoss.(&;, Si), where .S, consists of the
losses, as well as for the loss function of Example 3.#iyst ¢ trials of S. Note that the weightsv, ; are invariant
we have S(z) > 0 for all z and hence a unique Bayes-under permutations of the trial sequenge The predictions
optimal prediction: for every bias;. The actual Bayes-optimal ¢, of the algorithm are independent of the total lengtlof
predictions can be determined by straightforward calculatioritbe trial sequence.

For the logarithmic and square losses we have ¢. For the

: Algorithm 3.7 (The Generic Algorithm)tet L be a loss
Hellinger loss, we have

function andc andrn be any positive constants.
1

= —. Initialization: Set the weights to some initial values
14+ <ﬂ> wi,; > 0.
q r
_ _ _ Prediction: Let v, ; = w; ;/W;, whereW, = 30wy ;.
For the loss function considered in Example 3.4, wWitfz) = At the beginning of trialz, compute fory = 0 andy = 1
(1-%2"*—=1andL,(z) =% *— 1 for some positive value the value
«, we have N
B 1 Aly) = —cln Y vy e M @oen), (3.11)
7= 1 1/(a+1) i=1
1+ < q ) On receiving theith input ;, predict with any valuej, that

o ) satisfies fory = 0 andy = 1 the condition
For the absolute loss§(z) is identically zero, and there

must hence be at least one biagor which there are more L(y, 9:) < A(y). (3.12)
than one Bayes-optimal predictions. Easy calculations sh%w h valuei exi he alaorithm fail
that = = 0 is the unique Bayes-optimal prediction for biase no such valuey, exists, the algorithm falls.
q < 1/2 andz = 1 for biasesq > 1/2. However, for the bias  Update: After receiving thetth outcomey,, let
= 1/2 any prediction is Bayes-optimal. O
q / y p y p Wiy = wt,ie_nh(y“mt’i)~ (313)

B. The Algorithm and the Upper Bound To understand the algorithm, note that by (3.11) and (3.13)

We consider an algorithm first introduced by Vovk [35]ye can write A(y,) = Usyy — Uy, wherel, = —c In W,.

We give the general algorithm and its analysis, applied to Opence, we can considerc In W, as a potential function, and
situation in which the loss function is continuous. We theghe conditionL(y;, %) < A(y) means that at each trial, the
work out as examples the details for several interesting Igggrease of the potential must be at least as large as the loss
functions. of the algorithm.

The algorithm has two positive real-valued paramet@sd |y the case of the logarithmic loss, the key quantities in
n. We first introduce the algorithm in a somewhat open fornge Generic Algorithm have a natural statistical interpretation.
leaving the parameters and  unspecified and defining the ), particular, it turns out that it is optimal to set= 1, and
prediction, only by giving a condition it must satisfy. For g e—n7(ws: #+,:) — % (1 — z, ) 7. This latter quantity
the moment we also leave open the possibility that there dgn pe interpreted as the likelihood gf under a probability
no prediction that satisfies the condition, in which case Wgqsde| used by theth expert. Hence the update (3.13) can be
say that the algorithm fails. The parameiercan vaguely interpreted as a Bayesian update of posterior probabitities
be characterized as a measure for the error allowed for g the set of experts [6]. The additivity of the logarithmic
algorithm. The smaller the value the tighter upper bound |oss, and its associated statistical interpretation and chain
we get for the regret assuming that the algorithm does nefie, makes the analysis of this special loss more convenient,
fail. Hence, for applying the algorithm we need to find thgg pointed out in, e.g., [21]. In that paper, bounds for the
least valuec for which the algorithm is guaranteed to nevefpgarithm loss are obtained first, and then these are used, along
fail when thelearning rater is chosen suitably. with certain inequalities, to derive bounds for other losses.

It turns out that for a loss functiod. that satisfies the Here we obtain better results by using Vovk's generalization
assumptions of Theorem 3.1, the suitable choice is cr.  of the likelihood,c—7"¥ ) to directly obtain an analogous

andn = 1/c. This gives a bound;, 4(N, ¢) < ¢r, In N. The chain rule for a general loss.

main part of the proof is in showing that for any choicg ¢, The basic idea of proving the upper bound for the loss of
the algorithm is guaranteed not to fail for= 1/c. We also the Generic Algorithm is based on relating the total potential
give a more direct way of choosing a predictigrthat satisfies increasel/,,; — U, to the total loss of the best expert. The

the required conditions, provided that such a prediction existg|iowing upper bound was already given by Vovk [35].
Examples show that the seemingly complicated conditions for

7, are actually quite simple for the usual loss functions. Theorem 3.8:Let L be any loss function. Let
The algorithm uses aiv-dimensional weight vectow; = S = (&1, y1), - (Tes y0)
(wr,1, -+, we, y) @S its internal state. The weight; ; is TER e

always nonnegative and summarizes the performance of the an N-expert trial sequence in which the outcomgse
ith expert in previous trials. At the end of thth trial we {0, 1} are binary. Assume that during this trial sequence, the
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Generic Algorithm 3.7 with parametersandn does not fail A is larger thanLy(1), then the conditionLo(7:) < Ag in
but produces at each triala predictionj,. Then for alli the (3.12) holds for allj,. Thus the equivalence between (3.12)

total loss satisfies and (3.15) will be maintained for all nonnegativs, if the
Wig1 inverse Ly is extended in such a way that the condition
Loss (4, 5) < —cln Wy 9: < Lg'(Ap) holds for allg, € [0, 1] when Ay > Lo(1).

Hence, we say thai;g1 is a generalized inversef L, if
Ly*(Lo(§)) = ¢ for all g € [0,1] and Ly *(Ao) > 1
wheneverAg > Lg(1). Similarly,Ll_1 is a generalized inverse
of Ly if LT*(L1(¢)) = ¢ forall g€ [0, 1] andL7*(A;) <0
wheneverA; > L;(0).

Wit For instance, ifL is the square losd,,, we have the
W, generalized inverseg,'(z) = /z and L7 (z) = 1 — /=
for z > 0, so (3.16) becomes

Weg, s VA + VAL > 1.

< —cln 24 e Loss (&5, S). (3.14)
Wi

Proof: The condition (3.12) fory = w; together with
(3.11) and (3.13) implies

Ly, 9:) < —cln

and hence

¢

. Weg1
E L < —cln ——= < —¢l
2 (¥, 9) < —cln W S cln

' ' For the relative entropy 10sE.., we haveLg'(z) =1—e¢~*
for all <. Finally, by (3.13) we get and L7!(z) = ¢~*, so we get
é p— [
—wé—i—l’i = —wl’i H efnL(ytyﬂ?t,i) c Ao +e A1 S 1.
Wi Wi o 1 1
= For the absolute losk,;,s we haveL;'(z) = z andL{'(z) =
and the theorem follows. O 1-z so we need to have
For given values: and, we say that the loss functiah is Ao+ A; > 1.

(¢, n)-realizableif the condition (3.12) fory = 0 andy = 1

can always be satisfied by a suitable choicejofTo prove  Qur definitions of generalized inverses let us show the

the upper bound of Theorem 3.1, it now suffices to show thg§uivalence between (3.15) and (3.12) for all valuesigf
a loss functionL that satisfies the assumptions of Theoremging A, .

3.1 is(¢, 1/c)-realizable forc = ¢y,. The result then follows . .

from Theorem 3.8 by setting;, ; = 1 for all i. The rest of  L€mma 3.9:Assume thatl is a loss function such that

this section gives our formulation of Vovk's [35] proof forLo(0) = L1(1) =0, Lo is continuous and strictly increasing
these results. in [0, 1], andL4 is continuous and strictly decreasing|in 1].
We first develop an equivalent version of condition (3.12;0r any generalized inverses; " and Ly, the condition
Write Ap = A(0) and A; = A(1), so the condition (3.12) (3:19) is equivalent to (3.12) fay € {0, 1}.
for y € {0,1} can be expressed abo(j;) < Ao and Prg?f: If Ao & [0, Lo(1)], then bothLo(7,) < Ao and
Li(f:) < Ay. To obtain explicit bounds fog, from these ¥ = Lo (2o) hold for aﬂiﬁ € [0, 1] 1f Ay £ [0, L1(0)], then
conditions, we need to have some notion of an inversefor POth L1(4t) < Ay and Ly (A;) < g hold for all g, € [0, 1].
and L. Assume thatL, is continuous and strictly increasingH€nce, we may assume thaj is in the range of, andA, is
and L, is continuous and strictly decreasing [in 1], which N the range o‘rLl_. In thls case (3.12) and (3.15) are eqylvalent
is implied by the assumptions of Theorem 3.1. THanphas becaused.g is strictly increasing and.; strictly decreasingl

a continuous strictly increasing invergg® that is defined in e are now ready to show that if in Algorithm 3.7 we use
[Lo(0), Lo(1)], and Ly has a continuous strictly decreasing valuec such thate > ¢, wherecy, is as defined in (3.3),

inverseL " that is defined inL:(1), L1(0)]. and set) = 1/¢, then the algorithm never fails.
Consider first the case witl\g € [Lo(0), Lo(1)] and

Ay € [L1(1), L1 (0)]. Then the value:fugl(Ao) andel(Al) Lemma 3.10:Let L be any loss function such thatg

are defined, and (3.12) foy € {0, 1} can be equivalently and L; are three times continuously differentiabl,(0) =
; Li(1) = 0, and Li(z) > 0 as well asL{(z) < 0 hold for
written as 1 0 1

0 < z < 1. Assume that the value, defined in (3.3) is finite,
LA < §e < Lo H(Ao). (3.15) andS(z) defined in (3.1) is positive for alt. Then for allw,
]anda:t such that0 <z, ; < landw,; > 0for1 <¢ <N,
condition (3.16) holds whenever> ¢, andn = 1/c.
LTHA) < Lyt (Ao). (3.16) Proof: For 0 < z < 1, definep(z) = exp (—Lo(2)/c)

andqg(z) = —Ly(2)/c), and forr in the range op define
If (3.16) holds, the predictionj, can be chosen to be an a(z) = e (= La(2)/e) ! ge op

A predictiony; that satisfies (3.15) can be found if and only i

arbitrary value between the bound§*(A;) and Ly (Ao). f(r) =exp(—Li(Ly (—cln 7))/c). (3.17)
For instance, their meafL. 7' (A;) + Ly (Ao))/2 is a valid
choice for ;. Note that f(p(z)) = q(2).

Consider now the possibility that the valuk, or A; is First, assume thaf”(p(z)) < 0 holds for0 < z < 1. We
outside of the range af, or Ly, respectively. If, for instance, are later going to show that this is in fact truecif> ¢;,. Let



HAUSSLERet al: SEQUENTIAL PREDICTION OF INDIVIDUAL SEQUENCES UNDER GENERAL LOSS FUNCTIONS 1913

ri = pla;) and s; = g(a ;) = f(ry) for ¢ = 1,.--, N. some interval, by placing all the values_; in this interval
Then forn = 1/c we have but not making them equal we get
N N N
Ag=—cln <Z Ut,m) th,if(%‘) > f<z Ut,ﬂ‘i)
=1 i=1 i=1
and N and, henceLT!(A;) > Lyt (Ao).
A =—cln Z“ . In particular, we see that since the Generic Algorithm 3.7
! prt A does not fail with the parametets= c;, andn = 1/cy, we get

the upper bound claimed in Theorem 3.1 by applying Theorem
The assumptiony”’(r) < 0 implies 3.8 with the initial weightsw; ; = 1 for all <.

N N N Theorem 3.11:Let L be a loss function for which the
> wisi =Y v if (i) < f(Z vt7i7’i>. constant;, is finite. LetA be the Generic Algorithm 3.7 with
i=1 i=1 i=1 the parameters = cr, n = 1/cr, and the initial weights

wy,; = 1 for all <. Then for all ¥V and /¢, the regret of the

We get algorithm satisfies
N
Ai=—-cln <Z vtji&‘) Ve, aN, f) <ep In N
= N We are now ready to write the Generic Algorithm 3.7 in a
> _¢ln <f <Z Ut,iTi)) more explicit form for particular loss functions.
i=1 Example 3.12:1f L is the logarithmic loss, we havg, = 1
. N and can therefore take = n = 1 in the Generic Algorithm
=Li| Ly | —cln Z Ut, T4 3.7. After simple manipulations we ge&fg = —In(1 — p;)
B i=1 and Ay = —In p;, wherep, = >, v ;2,5 IS the weighted
=L1(Ly (Ao)) average of the experts’ predictions. Hence,
from which condition (3.16) follows sincé ! is decreasing. Lyt (Ao) = LTH(A) =pi

We now show that our assumptions dé and L; imply R . L .
that for ¢ > ¢; the function f has a nonpositive secondanOI g¢ = py is the only prediction for which (3.12) holds for

derivative in the range gf. We havef(p(z)) = ¢(z) and thus ¥ € {0, 1} with.this choice ofc andn. The loss bound we
F'(p(2)) = ¢'(2) /¥ (2). Differentiating further, we obtain obtain was previously shown by De Sardtsal.[14] and Vovk
[35]. O

P ()P (2) = (" ()P (2) = 4 ()" (2)) /P (). Example 3.13:Let L be the square loss. Vovk [35] has
shown that the square loss {$/2, 2)-realizable. Here the
result follows from Lemma 3.10 and Example 3.2. The note
after the proof of Lemma 3.10 further implies that the square
P(2) = —Li(2)p(2)/c loss is not(c, 1/c)-realizable for any: < 1/2. Hence, we take
¢ = 1/2 andn = 2 in the Generic Algorithm 3.7 for the square
loss. The condition (3.12) foy € {0, 1} now becomes

T 1/2
N — _ )2
In E i=1 Ut,i€ 2(1=my, ) )

Sincep’(z) = —Ly(z)p(z)/c < 0, we havef”(p(z)) < 0 if
and only if ¢’ (2)p'(z) — ¢'(2)p"(z) > 0. By substituting

and
P'(2) = (=Lg(2) /e + (Lo(2))? /¢*)p(z)

and using similar expressions fgi(z) and¢”(z), we see that 1 — <

. . 2
f"(p(z)) < 0 if and only if
In SN vy e 2
N i=1 Vt, i L
(_ Li(2) L5 (2)? + L) (2) Ly (2)? + o(Liy(2) LY (2) <4< <— : 5 ) - (3.18)
p(z)a(z) . -
—L (Z)LS(Z))) 3 2 0. By numerically substituting random values fgrandz, we
_ _ _ _ see that the seemingly natural chofge= >, v ;2 ; usually
Finally, since our assumptions imply does not satisfy (3.18). More generally, there is no function

f such that choosing; = f(3_, v 2+ ;) would guarantee
(3.18) to hold. To see this, considé¥ = 2 and set first
we conclude thaf”(p(z)) < 0 holds if and only ifc > R(z). *' 7 (0, 7/10) andv, = (2/7, 5/7). Then); vy, iy, = 1/2,

; .y o and evaluating the left-hand side of (3.18) with these values of
Hence,c > ¢ is a necessary and sufficient condition for .

. L x; andw, yields a bound.52 < f(1/2). On the other hand, we

having f”(p(z)) < 0 for all 2 O

= ' also have}_, v; ;x: ; = 1/2 whenz, = (3/10, 1) and», =

Note that above argument shows that the nonpositivity ¢3/7, 2/7), and evaluating the right-hand side of (3.18) with

f"(r) is also a necessary condition. ff’(r) is positive on these values gives the contradictory conditjfii/2) < 0.48.

Ly() L () - Li(2)LG(z) > 0
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Hence, the algorithm needs more information than is provideg just cite some of the basic results. If all the initial weights
by merely the weighted average of the experts’ predictionsw; ; are 1 and# is chosen to bén A(\/2(In N)/¢) where

It can be proved that in the more restricted case that all théz) = 1 + 2z + 2%/In 2, the Generic Algorithm 3.7 for
experts’ predictions, ; are in{0, 1}, we can guarantee (3.15)absolute loss satisfies
for the square loss witk = 1/ ~ 0.41 instead ofc = 0.5.
This gives a slightly improved bound. However, restricting Vi a(N, £) < tIn(N+1) + logy(N +1)
the experts to predict with binary values while allowing the ’ 2 2
algorithm to predict with continuous values does not seem\gte that here it is necessary to kndvbefore the first trial
natural setting. U in order to choose the learning rateappropriately. Similar
Wresults can be obtained by basing the choice oh an upper
bound for the lossnin; Loss; (&;, S) of the best expert instead
of on £

Finally, we consider the variations of the Generic Algorithm
given by Cesa-Bianchét al. [6] for the special case of the
absolute loss. Instead of the update (3.13), we write more
generallyw; 41 ; = ay ,we,; and

Example 3.14:Take L to be the absolute loss. As no
¢, = oo, we know that the absolute loss is nt, 1/¢)-
realizable for any. We therefore lety > 0 be arbitrary, and
see for which values the absolute loss i&, n)-realizable.

By using the bound="* < 1 — (1 — ¢~ ")z that holds for
all z € [0, 1], we obtain

Lyt (o) — Ly (Ay)

N
N N Aly)=-cln Vi iQ g

=—cln Z vy, T — <1 +c IHZUMG_"@—"%J)) ; e
i=1

i=1

N and consider choices for the factasg ; in addition to the
> c<_ In Z v (1= (1= e M)y, ;) choice oy, ; = exp(—n|y: — z¢,4]) of the Generic Algorithm.
el First, note that if—In c; ; < nly: — 2+ |, the proof of
N Theorem 3.8 can easily be generalized to yield the same loss
—1ln Z v (1—(1—e"7)(1 - a:m))> -1 bound. Second, note that the proof given for the inequality
i=1 LT (A1) € Lyt (Ay) is valid assuming

=c(—=In(1 —pr +pre™) = In(ps + (1 = pr)e™) — 1 B
% <1- (1 —cC n)|yt - -Tt,i|-
wherep, = . v ;2 ;. By Jensen’s inequality, this is positive
for ¢ > (2 In(2/(1 +¢~7)))~!, and the prediction condition Hence, the algorithm works and gives the same worst case

(3.12) fory € {0, 1} becomes loss bound for any choice
N N eyl < i S1=(1—=e "y — x4l (3.21)
In Z vy e 1AT) In Z vy, €
=1 . =1 Interestingly enough, the weights obtained using
2In = 2o = ati =1—(1—e ")y — x4
(3.19) o _
Cesa-Bianchet al. [6] have noted that (3.19) always holdhave a Bayesian interpretation [6]. U
if we choose
X In(1 — p, + pre™) C. Lower Bounds
v In(1 —p; +pre=?) + In((1 — p;)e=7 + p;) This subsection contains proofs of the lower bounds for

) ) VL(N, ¢) stated in Theorems 3.1 and 3.3 in Section llI-A.
but does not in general hold f@; = p;. Hence, the weighted The |ower bounds hold even for algorithms that recefivas
average of the experts’ prediction provides sufficient inform@hput before the first trial.
tion for the prediction, but cannot be used directly. The lower bound proofs are based on a probabilistic method.

The bound obtained by applying Theorem 3.8 for thgye consider trial sequences in which the outcomes < t <
absolute loss with the choice = (2 1n(2/(1 +¢7")))™*, ¢, are independent, identically distributed random variables

namely with some distribution@ (over {0, 1}) and the experts’
wy g predictionsy, s, t =1, .-, £,¢ =1, ---, N, are independent,
—ln 57+ Loss (&, 5) identically distributed random variables with some distribution
Loss.(4, 5) < L 5 (3.20) P (over |0, 1]). We then derive for an arbitrary algorithn
2In P a lower bound for the expected regiétV;, 4(S) when the

trial sequencesS is drawn from this distribution. As clearly
was first proven by Vovk [35]. We would like to choose the/;, 4(N, ¢) > EsV 4(S) holds for all 4, this yields a
learning rate; in such a way that the loss bound on the rightower bound for the minimax regret. Surprisingly, it turns out
hand side of (3.20) is minimized. This tuning of the learninthat the lower bound derived from this simple probabilistic
rate is discussed in detail by Cesa-Bianehal. [6], [7]. Here setting is tight, i.e., it matches asymptotically the upper bounds
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derived assuming an arbitrary adversarial choice of expebts This is covered in Lemma 3.17. Setting
and outcomes.

We now outline the proof. First, consider arbitrary fixed Procplr = bi] = Proeplz = b2] = 1/2
distributions P and Q. Let ¢ = Prycqo[y = 1] be the
probability of drawing the outcomd, or the bias of the
distribution Q. Define

VL(N, #) = Q(y/£ log N).
H(z) = (1 - 9)Lo(#) + qL1(2) (N, &) = (vl log N)
The more interesting case, considered in Theorem 3.16, is

to denote the expected loss of a predictiomvith this bias. that b is the unique Bayes-optimal prediction for biasi.e.,

Recall from Section IlI-A that any € [0, 1] for which H (z) b is the unique minimum point of. In this case, we choose
is minimized is called a Bayes-optimal prediction for the bialg such that

g. Assume thath is a Bayes-optimal prediction. Hence, the
expected loss Procplt =b—h] =Pryeple =b+h] =1/2

4

yields a distribution” with = < H(z) for all z ando > 0,
which substituted into (3.22) gives the desired result

R where & is close to zero. By estimating the loss functions
Es[Loss (4, 5)] = ZE%EQ[L(%’ )] Ly and Ly by their second-order Taylor expansions aroénd
=t we obtain values of and« that substituted into (3.22) yield

obtains its minimum when the algorithrhis such thaty, = b VL(N, £) > (R(b) — o(1)) In N, where R(b) is as in (3.2).

for all t. Therefore, also the expected regha[V;, 4(S)] is Notice that the bound still has an implicit dependencetyn

minimized for this A, and for the purposes of bounding this We assume thatis Bayes-optimal for biag.

expected regret from below we can without loss of generality Now remains the choice of, or the biasq. If even for

assumej, = b. one bias there is more than one Bayes-optimal prediction, we
Note that this is true regardless of the experts’ predictiorférectly get the lower bound(v/¢ log V) using this bias.

so we could even allow the algorithm to know all the exOtherwise, Lemma 3.18 shows that by varyipfrom 0 to 1

perts’ predictions beforehand. Thus we are actually provir‘(ﬁﬁ can also make the Bayes-optimal predictiorary over the

the stronger result that there is a fixed choice of experf@’ (t)le rarllgeelf?robrrp tct)hl. g’husdabsu_ittable choice of allows
predictions such that for this choice the lower bound is alwa)L/§ 0 replac () N the bound by 1S supremuy. . :
nAs a minor technical complication, there is a third case: if

achieved for some set of outcomes, no matter what predictiP . : . . _
i . or some bias; there is a unique Bayes-optimal predictin
algorithm is used.

S o
Consider now the experts, choosing their predictions indge)}ét thélg);)]\g 0, we get a bound that is slightly weaker than

pendently according to a distributioR. The two parameters

. . We now begin the actual proof. First we provide a bound
we need for our lower bound calculation are given by

that holds for arbitrary distribution® and Q.

T =Eycq »ep[L{y, x)] Theorem 3.15:Let P be a probability measure ¢f, 1] and
and () a probability measure of0, 1}. Assume that fogy = 0 and
2 y = 1, the conditionPr,.c p[L(y, ) > K] = 0 holds for some

0" = Eycq[Varsep[L(y, ©)]l- constantk. Let b be a Bayes-optimal prediction f@p. Let

We begin the lower bound proof by giving in Theorem 3.15

=Eycq. zep|L{y,
for large N and ¢ a lower bound of the form 7 =EyeqrerlL(y, @)]

and
Vi(N, £) > ¢H(b) — bt +acVlIn N (3.22) 0% = Eycql[Varyep[L(y, 2)]]-
where « is positive and independent &f, ¢, and P and). Assume that fory = 0 and ¥y = 1 the variance

The first term on the right-hand side of (3.22) is simply th&ar,cp[L(y, )] is strictly positive. Then for alle > 0
expected loss for the optimal prediction algorithm, and tHbere is an/. such that for alll > /. we have

second term is the expected loss for any fixed expert usin%

distribution P. The final term shows how much better the V2(V, £) 2 £Eycq[L(y, b)]—£r+(an—e)ovL I N (3.23)

best expert ofV is expected to perform compared to a fixed
. . o . . ‘Where
single expert. Obviously, this final term is large if there is

much variance in the experts’ predictions; this variance is here

measured by the parameter Jim ay = V2.
The bound of form (3.22) given in Theorem 3.15 holds for
any P and @, but is not likely to be useful unles® and Proof: Givenz € [0, 1]¥*¢ andy € {0, 1}¢, we de-

Q@ are carefully chosen. Consider first choosiigvhen( is  fine an N-expert trial sequence of lengthby
already fixed. The simple case is the one in which there are

two distinct Bayes-optimal predictions for bigssayb; and (,y) = (=1, 1), (@, Ye))-
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For an on-line prediction algorith, considerVz, 4 ({z, ¥)) We now define foi =1, ---, N andf{ =1, 2, --- the random
as a random variable, wita andy drawn from the product variableS;, in the domain[0, 1]V>> x {0, 1}°° by
measures”Y *¢ and ¢, respectively. The expected value of .
a rand_om var!able_\ is clea_rly a _Iower bound fqr the supremum. Sie(, y) = Z Lly;, zi;)
Combining this with the linearity of expectation, we get =
Vi, a(N, £) 2 EpcprxeEycoe Vi, a((®, ¥)) to denote the loss of expertn the first/ trials. We also define
¢ for a given sequencg € {0, 1}° the random variabl&?, by
= Eyeall(y, §1)] = EzcpixcEycqr ‘
=t SY(@) = Sule, y) = Y TH(@).
. [ min Loss,(&;, (z, y))} i=1
L=ish The underlying probability measures for these random vari-
2 lBycq[L(y, b)] — Egc prxcEycq ables are the product measures defined”bgnd @, so for a
| min_ Loss.(&, (=, 4)) fixed y the random variablers?}]" andT}fj, are independent for
1<i<N o A5 Y\ (¢, 3) # (¢, §). To study the distribution of¥, we define a

) ) ) ) suitably normalized random variabléfz by
Since this holds for any, we obtain (3.23) if we can prove

that ¢
S — D _BITY
EwEPN”EyEQ‘ |:11<I111<11N |_OSSL(((:Z <.'E, y>):| U:;z _ j=1

<tbr—(any —e)oViIln N. (3.24)

(3.25)

Our basic method in estimating the expectation on the left- ]
hand side of (3.24) consists of two steps. First, we apphP€NE[U;;] = 0 and Var [U}] = 1. Further, since we have
the central limit theorem to each of the random variabl@Ssumed thaPr [|T%|] > K) = 0, the Lindeberg form of the

Loss,(&;, (@, y)), i = 1,---, N, and see that for largé, central limit theorem implies that each one of_mgequences

they have an approximately normal distribution. Second, &1 Uiz: *=+» @ = 1, -+, N, converges in distribution to a
apply known results that directly give the expectation of thandard normal random variable.

minimum of a set ofV identical independent normal random L&t 1, F», ---, Fiy be N independent standard normal
variables. Both of these steps are relatively simple in thefi@ndom variables. It is well known [18] that

selves. Unfortunately, the random variables Ldss, (z, y)) . —

that give the losses of the various experts are not independent, E ngﬂv FZ} =—ayVih N

as the outcome sequengaffects them all. Therefore, to make _
the proof rigorous, we need to add some inelegant details Were imy ... ay = \/5 Since for eachi, the sequence
first considering only an arbitrary fixed outcome sequepce Uj1, U}, --- converges in distribution td’;, we could now

Let ¢ = Prycoly = 1]. Then apply various convergence theorems to show
7 = (1 = QEaer[Lo(#)] + ¢Ezep[La()] lim Egcprvxe yeor { min Uzyé(w)} =—axVIin N
and {—o0 ! 1<i<N
0? =(1 — q) Vargcp[Lo(z)] + q Vargc p[Ly (x)]. where againimy ... axy = v/2. However, this is not quite

what we need. We are really interested in the expected mini-
mum of the variabless?, that give the losses of the experts,
1 & not of the normalized variablds},. As the denominator on the
@)= > v right-hand side of (3.25) has a complicated dependencg on
i=1 the expectations of the normalized variables cannot readily be
We also let transformed back to expectations of the original ones. To get
R R R the desired result, we show that in considering expectations
Te =(1 = 4e(¥))Ecep[Lo(#)] + Ge(y)Eaecr[L1(2)] in the limit of large#, we get the same results if we replace
and Var [T¥] in (3.25) by its expected value.
60(y)? = (1 — Ge(y)) Varae p[Lo(x)] + Ge(y) Varaep[Li(z)]  Thus defineri(y) = 6¢(y)/o. Then|r(y)| < K/o, and by
the strong law of large numbers we havey .., 7(y) = 1

be the estimates obtained foerando? by usingg,(y) instead o aimost ally. We now apply the equation
of the true probabilityq.

Fore € [0, 1] andy € {0, 1}, let T4(&) =  1im {7, E { - ”
’ LM S . B3 o [T Y N X oo min i X
L(y;, =, ;) be the loss of expettat trial j, if z is the sequence ~ ¢—e° vee W)acr 1< @)
of experts’ predictions ang the sequence of outcomes. We B
considerZ?; as a random variable on the domain 1], -

Given a sequencg € {0, 1}>° and{ € N, define
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which we obtain directly by applying Lemma A.1, proved in 2) If (1 — ¢)L§(b) + qL{(b) = 0, we have
the Appendix. Intuitively, we have here merely changed the

_ 1/6 /1o
order of taking the limit/ — oc and taking expectations, and VL(N, £) = (¢ log V).
taking a minimum of random variables. In other words, we  prgof: Let Q be the probability measure ofo, 1} for
now have which Prycq [y = 1] = ¢. Let A be an arbitrary on-line
- prediction algorithm. For any probability measufeon [0, 1]
, oe(y) .
i Eycoe —, Eacpvxe 1In1<nN Uy (=) and for anye > 0, we have by Theorem 3.15 for sufficiently

large ¢ the bound
Vi, a(N, ) 2 U(Eycq[L{y, b)] = 7) + (ay —€)ovV{In N

= —anyVvin N. (3.26)

We are now through the probability theoretic part of the proof, (3.27)
and the rest is straightforward. where limy ... ay = /2. For some positive parametér
By partitioning the summations in (3.25) into two partglefine P to give » = b — i with probability 1/2 and
according to whetheg; = 0 or y; = 1, we can write z = b+ I with probability 1/2. We use some simple calculus
to approximate the right-hand side of (3.27) as a function
Uy of h, within accuracyo(h®). We then choose the value

S¥ — (1 — 4o(9)Esep[Lo(2)] + Ge(9)Erep[L1(2)]) that maximizes the approximated value. We also see that the

= s s resulting value for is such that the(h?) terms can be safely
1— dl € L dl € L . . . . .
5\éﬁ(( p (qz)(y))V“Lr erlLo(@)] + 4e(y) Varze p[L1(x)]) ignored wher? and N approach infinity in the manner stated
_ P — ey

in the lemma.

A We can expand
B bstituting this into (3.26), btai " "
y substituting this into ( ), we obtain Lo(bih):Lo(b)iLg(b)h+L02(b) hQiLO (b) B 4 o(h?)
Ly Eve@ [Eeeprxee [mini<ion S5 () — £7e(y)]] _
P o/l whereo(h?®) denotes a quantity’(h) such that
= —ayVin N, }lin% (f(R)/R*) =0
Therefore, for alle > 0 there is a valug. such that for all 4, similarly forL,. We now substitute these expansions into
¢ =z L. we have the various quantities in (3.27). First, note that
Eyca~ [Ezcmm LL% Siulw, y) - m(y)” Eoep[Lo(@)] = Lo(b) + B L(5)/2 + o(h®)
[ [ Ewn)|| -
=FE,coc |Es pN><£’|: min Loss (&, (x, ¥ ” — 4T
e sy Vatae plLo(@)] =Bacpl(Lo(2) = EucpLo())?]
< —(ay —e)ovlIn N. :Lg(b)Qh2 + o(h4).
This implies (3.24), as desired. U Similarly, Var,cp[Li(z)] = L7 (b)?h? + o(h*), and
We now see how Theorem 3.15 implies a lower bound for o = h2((1 — Q)L (b)? + gL, ()?) + o(h*).

VL(N, £) when the probability measur® for the experts is
chosen suitably. First we consider the case in which the Bay&¥e also have
optimal prediction is unique. The Bayes-optimal prediction 7 =(1 = q)(Lo(b) + h*Lg(b)/2) + q(L.(b)
is the minimum point of the expected loss; the result has +R2L(B)/2) + o(h®)
two cases depending on whether the second derivative of the
expected loss is positive or zero at that minimum point. SO
Lemma 3.16:Let L be a loss function such théty and L Eyco[L(y, b)] -7 = _%2 ((1 = Q)LU (D) + gL/ (b)) — o(h?).
are three times differentiable, adg,(z) > 0 and L{(z) < 0
hold for0 < z < 1. Assume thab € (0, 1) is a Bayes-optimal Hence,Vy 4(N, £) > ¢(rh — sh?) — O(£)o(h*), where
prediction for biasg € (0, 1).

1) It (1 - gLg(b) + qL{(b) > 0, then —(ax —e) \/m*\/ DL el
VL(N, £) > (R(b) — 0o(1)) In N and

(1 - @) Lg(b) + ¢L7(b)
where R(b) is as in (3.2) anth(1) denotes a quantity 2

that approaches as the valued and NV and the ratio We first consider the case > 0, which gives the first part
¢/1n N all approachoo. of the theorem. The main paf{rh — sh?) of the bound is
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maximized by choosing = r/(2s). For this value ofh, we Hence,s is as given in (3.28). The result now follows from

get Theorem 3.15 with eitheb = b; or b = b,. O
2 Note that for strictly monotond., and L1, the right-hand
Vi, a(N, £) > ¢4 Yl O(£)o(h®) side of (3.28) is strictly positive. For the absolute loss, we can
V2 (1 — DAY 4 oL (b)2 apply Lemma 3.17 withy = 1/2, b = 0, andb; = 1. This
_lav=e) {1-9) 0,(, ) +a ,1,( ) giveso = 1/2, and hence
2 (1 =) Lg(b) + qL7(b)
-In N — o((log N)2271/2) In N VL(N, £) > (1 —o(1))/(£ In N)/2
sinceh = O((log N)1/2¢-1/2). By applying (3.9) to eliminate Which is the result obtained by Cesa-Bianehial. [6].
q we now get the claimed result, sinfieny_ . a3 /2 = 1. Recall that in Lemma 3.16 we had a lower bound in terms
Consider now the case= 0, which gives the second partOf R(b) assuming that is the unique Bayes-optimal prediction
of the theorem. We now have for some bias. We now show that either every valus the
5 Bayes-optimal prediction for some bias, which allows us to
Vi, a(N, £) 2 ahV{In N — O(£)o(h”) replaceR(b) by its supremun;,, or else for some bias there
where are multiple Bayes-optimal predictions, which gives us the

stronger lower bound of2(+/¢ log V) by Lemma 3.17.

= r— 1-— L/b2+ L/b2>0.
a=(ax E)\/( DLo(0)* + Ly ®) Lemma 3.18:1f a prediction = € (0, 1) is not Bayes-
By choosingh = ¢~1/3 we get optimal for any bias; € [0, 1], then there are two predictions
by and b, with b; < z < by such that for some biag both
1/6 A~ 1 2 1 2
Vi, a(N, £) 2 al’/PVIn N+ o(1). b, and b, are Bayes-optimal.

Proof: Consider a prediction € (0, 1) that is not Bayes-

If the Bayes-optimal prediction for the bias is not uniqueOptimal for any bias. LefR; be the set of biases for which
we get an asymptotically stronger bound that grows asd there is a Bayes-optimal predictidn< z, and letR, be the

N grow. set of biaseg; for which there is a Bayes-optimal prediction
Lemma 3.17:Let L be a loss function such that, is b > z. If we can showR; N Ry # 0, we are done. Since

strictly increasing and.; strictly decreasing. Assume that foris never Bayes-optimal, we havé, U R, = [0, 1]. Hence, if

biasg there are two distinct Bayes-optimal predictidnsand both 2; and R, are closed, their intersection cannot be empty.

bs. Then for alle > 0 there is an¢. such that for alll > ¢, Suppose thak, is not closed. Lepy, p», - - - be a monotone
we have sequence of points iR that converges to a poingt € R;.
Let b, < =z be a Bayes-optimal prediction for bigs,,
VE(N, §) 2 (ay —e)oviln N n=0,1,---. The sequencé,, b,, - - - is also monotone and
wherelimy_.. ay = v/2 and converges to some limik < ». Let & be a Bayes-optimal
, 1l—g , ) prediction for biasp. As p € R;, we havel’ > z. Define
07 = == (Lo(b1) = Lo(b2))” +  (La(b1) = La(b2))"

(3.28) F(q, z) = (1 — q)Lo(z) + qLa(z).

Proof: Let b; and b, be two distinct Bayes-optimal
predictions for some probability measueon {0, 1}. As Lg
and L, are strictly monotone, the bias @f cannot be) or 1.
We define a probability measui@ by

Sinceb,, is Bayes-optimal for biag,,, we haveF(p,,, b,) <
F(p,, V') for all n. Since F' is continuous, this implies
F(p,b) < F(p, V). As I/ is Bayes-optimal for biagp, so
is b. Thusp € Ry, a contradiction. A similar argument works
Procplz =b1] =Prpeplz =b] =1/2 if we assumeR, to be not closed. O

and apply Theorem 3.15. Then We are now ready to combine our lower bounds into
. . one theorem. First, however, we wish to replace the vari-
7 = ByeqlL{y, b)] = Bycq[L(y, b2)] ous assumptions concerning Bayes-optimal predictions with

Further, we get assumptions about the functioh defined in (3.1). For this

Varycp[L(0, 2)] = Eqcp[L(0, 2)?] — Eue p[L(0, 2)]? purpose, we apply Lemma 3.5.

1 Lol )2 1 Lo(bo)? Proof of Lemma 3.5:Since we assumd., to be strictly
9 o(b)” + 2 o(b2) increasing andL; to be strictly decreasing) is the unique

1 1 2 Bayes-optimal prediction for the biasand 1 is the unique
- <§ Lo(bs) + 5 L0(52)> Bayes-optimal prediction for the bids
1 Assume first thath; and b, are two Bayes-optimal pre-
:Z(Lo(bl)—Lo(bg))2 dictions for some bia®) < ¢ < 1, with b; < be. Thus

the expected losg(z) = (1 — q)Lo(z) + qL1(2) has local
minima atz = b; andz = b, and, thereforef(z) has a local
1 maximum at some value with b1 < a < by. We then have

Vargep[L(1 = Z(L1(by) — L1(by))2. Y -
arzerlL(l, @) 4( 1(by) 1(b2)) f'(a) = 0 and f”(a) < 0. The conditionf’(a) = 0 implies

and, similarly,
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q/(1—q) = —Liy(a)/ L} (a), which substituted intg”’(a) < 0 to get other bounds for, say, constaMtwith ¢ approaching

gives S(a) < 0. infinity. Except for some special cases, we do not really have
Assume now that for every biasthere is a unique Bayes-results along these lines. However, we give here some ideas

optimal prediction. Then Lemma 3.18 implies that for all and arguments that could be useful for such work.

there is a biag for which z is Bayes-optimal, and we know First notice that for the logarithmic loss, there is a simple

that this bias; must be unique. LeB(z) denote the bias for argument that shows the lower bouh@ (N, ¢) > In N for

which z is the Bayes-optimal prediction. We know th&tis N = 2F and/ > k.

o . o ,
strictly increasing. LeY/(z) = —Ly(z)/Ly(z). We then have Example 3.20:For arbitrary positive integek, let N = 2%

/(2) = g(B(2)) whereg(q) = q/(1 — q). Sinceg and 5 are and/ = k. Let A be an arbitrary on-line prediction algorithm.

strictly increasing, so iy, and, therefore, the derivative(z) For the trialst = 1, -- -, £ we choose binary prediction vectors

icnetgrvo;l bzsnegatlve, and cannot be zero on any contlnuc:)lf:l:s6 {0, 1}N in such a way that the set of the experts’

) . ) B prediction sequence§z; ;, ---, ¢ ¢)|1 < 4 < N} contains

F(z) = Lo(x) L (7) = Li(5)LG(2) _ 5(2) all the 2° = N possible binary sequences of lengthThe
Li(z)? Li(2)* outcomesy,; are chosen by an adversary in such a way that

the claim follows. g u = 0 if the prediction g, of the algorithm A satisfies

_ 9 > 1/2, andy, = 1, otherwise. Then at each trial the
_The lower bounds in Theorems 3.1 and 3.3 now followigorithm incurs loss at leash 2, and the total loss of the
directly from the following theorem. algorithm will be at least In 2 = In N. One expert will have

Theorem 3.19:Let L be a loss function such thag, andz, total 1080, so we obtainVz, 4(N, £) > In N. This matches

are three times differentiable, ard (z) > 0 and L,(z) < 0 exactly the upper bound fdr;, +(V, £) given in Theorem 3.1
hold for all 0 < z < 1. Let S(z) be as in (3.1). and Example 3.2 whed is the Generic Algorithm 3.7.

Another way of thinking of this lower bound argument is
1) I S(z) > 0for 0 <z <1, then as follows. At the first trial, half of the experts predictand

VL(N, £) > (cp, —o(1)) In N half of the experts predict. After the trial, those that made
] . a mistake are eliminated, and those that were correct remain.
wherec, is as in (3.3). At subsequent trials, half of the remaining experts predict
2) If S(z) = 0 for some0 < » < 1, then and half predictl. Thus at trialt there areN/2t~! experts
VL(N, £) = Q(El/ﬁ\/log—N) remaining, each with cumulative lo§s while the rest of the

experts have cumulative loss and have been eliminatedl
for all &« > 0.
3) If S(z) < 0 for some0 < z < 1, or S(z) = 0 for all
the values> in some continuous interval, then

Note that by considering a single trial this easily gives for
the logarithmic loss the bound;(2, 1) > In 2. The general
lower boundVy, (N, £) > In N for the logarithmic loss, when
VL(N, £) = Q(\/£ log N). N = 2% and/ > k, can also be obtained by applying the
following Theorem 3.22 to this lower bound fdry, (2, 1).

Proof: If for some bias there are two distinct BayesTheorem 3.22 is proven using the following lemma.
optimal predictions, we have by Lemma 3.17 the bound

VL(N, £) = Q(/Tlog N), which is the strongest of the Lemma 3.21:Assume that for all on-line prediction algo-
bounds claimed here. Thus we only need to consider the c&fams A’ there IS aniv-expert trial sequencs” of length £/
in which for each bias there is at most one Bayes-optim@#ch thatVz, x/(5') > a, and that for all on-line prediction
prediction. By Lemma 3.18, we then have for all predictior@/gorithmsA” there is a two-expert trial sequen§€ of length
z a bias such that is Bayes-optimal. By Lemma 3.5, the?” such thatVy, 4~ (S”) > b. Then for all on-line prediction

value S(z) is always nonnegative and cannot be zero on a,s&gori:c/hmsA there is a2N-expert trial sequenc# of length
continuous interval. £+ 0" such thatVy 4(S) = a+b.

Recall that when: is Bayes-optimal forg, the conditon ~ Proof: A 2N-expertcoupledtrial sequence is a sequence
(3.8) implies that(1 — ¢)L%(z) +¢L"(z) has the same signn which each instance, has the_propertytt,f, = Tt Nt for
as S(z). If S(z) = 0, then applying Lemma 3.16 Part 2)1 < i < N. A 2N-expertsimpletrial sequence is a sequence
with the biasq that makes: Bayes-optimal gives the boundWhere each instance; has the property
VL(N, £) = Q(#*/%/log N) for all a > 0. If S(z) > 0 for

. T, 1 = X, 2 =+ =T, N
all z, Lemma 3.16 Part 1) gived/ (N, ) = (R(z) —
o(1)) In N forall z, from whichV. (N, £) > (c—o(1)) In N
follows. O Tt, N+1 = T, N42 = "+ = Tt,2N-

Note that2/NV-expert coupled trial sequences are essentially

N-expert trial sequences aBd-expert simple trial sequences
The lower bounds we have proved are sufficient to show there essentially two-expert trial sequences.

we cannot improve upon the constamnt in the upper bound Since we assumed that for all prediction algorithmé

of Theorem 3.1. However, the lower bounds are based tirere is an/N-expert trial sequences’ of length ¢ such

having both? and N approach infinity. It would be interestingthat V;, 4-(S’) > «, it follows that for all on-line prediction

D. Alternative Lower Bound Methods
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algorithmsA there is &N -expert coupled trial sequenée of Theorem 3.22:For any loss functiorl. and positive integer

length?’ such thatz, 4(S1) > a. Similarly, since we assumedk, we haveVy (2%, kf) > kVi(2, £).

that for all prediction algorithmst” there is a two-expert trial

sequences” of length#” such thatVy, 4 (S") > b, it follows

that for all on-line prediction algorithmd there is &2 N-expert

simple trial sequencd, of length#” such thaty, s(S2) > b. }Lm VL(N, &) >clog;, Nln2=c¢In N.
Now let A be an arbitrary on-line prediction algorithm for -

trial sequences of lengtti + ¢”. Given a trial sequencg’ of

length?’, let A(S”) denote the algorithm for trial sequences of lim Vz(2,4) >cpln 2

length¢” that simulates the algorithm but processes the trial oo

sequence’ before the first actual trial. Our assumptions impljor the constant;, defined in (3.3), we would again obtain the

that there is & N-expert coupled trial sequenég of length#’  asymptotic lower boundz (N, £) > (c. —o(1)) In N stated

for which V,_4(S1) > a, and that there is aN-expert simple in Theorem 3.1. However, this new bound would be stronger

trial sequenceSy of length ¢/ for which Vi 4(s,)(S2) > b. because the term(1) approache$® a_\sﬁ approachesc for all

Let S be the2N-expert trial sequence of length 4 ¢ that IV of the form v = 2*, whereas in the bound of Theorem

In particular, iflim; .., V7(2, £) > ¢ ln 2 for some con-
stantc, then for N = 2%, Theorem 3.22 implies

Hence, if we were able to prove

is obtained by concatenatingy and . 3.1 the termo(1) is stated to approach only when bothV
To complete the proof, we show that and ¢ approachoc.
To obtain the lower boun®7 (N, ¢) > (1/2 —o(1)) In N
Loss. (A4, S) — Loss, (&, ) > a+b given in Theorem 3.1 and Example 3.2 for the square loss by
’ ©ves= applying Theorem 3.22, we would need to show
holds for somel < i < 2N. Note that }im Vi(2,0) = 11172 (3.29)
Loss. (A, S) = Loss,(A, S1) + Loss,(A(S1), Sa). We conjecture that (3.29) indeed is true. We have numerically

obtained lower bounds such 5,(2, 500) > 0.3456, while
(In 2)/2 = 0.3466. (Obviously, V1(2, ¢) is an increasing
function of ¢, and V1.(2, £) < (In 2)/2 by the upper bound
of Theorem 3.1 and Example 3.2.) These numerical results
Loss (4, S1) > Loss, (&, S1) +a are based on a recurrence we have not been able to solve
in a closed form. Note that for the square loss, the simple
holds for somel < ¢ < 2N. Since S; is a coupled trial construction used for the logarithmic loss does not yield an

We know that

sequence, this implies that for some< £ < N we have optimal lower bound. If we havé = 1 and N = 2, with
1 = (0, 1), we haveVy a((x1, 1)) < 1/4 = 0.25 for the
Loss, (A, S1) > Loss,(&:, S1) +a algorithm A that predictsl/2, and this bound falls short of

the required(ln 2)/2 = 0.3466.
The preceding remarks show that for the logarithmic loss

both for: = k£ and fori = N + k. We also know that
we have

Loss, (A(S1), S2) > Loss, (&, S2) + b Jim Vi(2*, 0) =k Hm Vi (2, 6).

. . _ _ltis an interesting open question to see which loss functions
holds for somel < j < 2N. Since.S; is a simple trial 1, have this property. Theorem 3.22 gives

sequence, this implies that ] X ]
éhm Vi(2®, 6 >k éhm Vi(2, £)

Loss.(A(S1), S2) > Loss (€5, S2) +b for all loss functions. To show equality it is sufficient to show
] ] lim Vi(2,4) > ¢p In 2
holds foralll < j < Norforall N +1 < j < 2N. Hence, {—o0
we have and our conjecture is that this is true for the square loss.

Loss.(A, S1) > Loss.(&;, S1) +a IV. CONTINUOUS-VALUED OUTCOMES

and A. Applying the Generic Algorithm
We now show that under certain assumptions, The Generic
Algorithm 3.7 also works for continuous-valued outcomes
¥ € [0, 1]. These assumptions hold for the square and
Again, the proof of Lemma 3.21 remains valid if therelative entropy loss, but not for the absolute loss, which will
algorithms are allowed to know the length of the trial sequenbe considered in Section IV-B. We also consider the more
beforehand. An obvious induction based on Lemma 3.21 givgsneral situation where the valugs; andy, are not in the
the following result. rangel[0, 1].

Loss,(A(S1), S2) = Loss, (&), S2) +b

for j = k or for j = N + k, which proves the claim. O
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Lemma 4.1: Assume that for ally, a, b € [0, 1], the func- Example 4.4:Let L be the square losb.,. As the second
tion g defined byg(y, a, b) = L(y, a)/c — nL(y, b) satisfies derivatived*L(y, z)/dy? is constant, the second derivative of
e b P P 2 the functiong of Lemma 4.1 i9) whenever = 1/, and hence
g(y,Qa, ) + < 9y, o, )> > 0. (4.1) (4.1) trivially holds. Since:, = 1/2, we let A be the Generic
Ay Ay Algorithm 3.7 withe = 1/2 and n = 2. Then by Theorem
If (3.12) holds for binary valueg € {0, 1}, then it holds for 4.2 we haveV, 4(S) < 3 In N even if the trial sequencé
all valuesy € [0, 1]. contains continuous-valued outcomes.
Proof: We write (3.12) agL(y, i) — A(y))/c < 0. By Consider now the more general case that at ttjathe
exponentiating both sides and applying (3.11), we get ~ experts’ predictions,,; and the outcome, are in a known
N range[s:, s + . Let
Ly, Gi)/e ZUW e m ) < (4.2) @ ;= (w0 — s0)/re
i=1

Let us denote the left-hand side of (4.2) ). Then

and
yi = (yt - St)/7’t

N
fly) = Z IR TR TR ) and letj; be the prediction of the Generic Algorithm when it is
‘ ~ b given these scaled inputs$ ;, and outcomesg;. Then Theorem
3.8 applies to this scaled sequence of trials. For an algorithm

so for the second derivative df we get that predicts withj, = s, + 7,4, we then have the following

) N loss bound, if we choosg = 2 and the initial weights to be
9 fgy) _ equal:
Iy i=1 ¢ v — i\ ‘ v — 2\ In N
t — Yt - t — Lt
o[ 9 G w9ty B 2 i) ) 2 (— ) < min > (7 ) T 43
t,2 8y2 ay =1 =1

We can consider (4.3) as giving a loss bound similar to (3.14),
but with a loss function that changes dynamically as the ranges
a>?t x¢,; andy, vary. Note that achieving this bound requires
thatst andr; are known before the predictiah is to be made.
This is the case, for instance, if the outcogmeds assumed to
be within the range defined by the smallest and largest expert
prediction at triakt. Another special case is that before the first
Theorem 4.2:Let L be a loss function for which the trial, we know thatz, ; andy; will always be in some range
constantey, is finite and the condition (4.1) holds fer= ¢,  [S, S + R]. We can then take; = R for all ¢, and (4.3) is
andn = 1/cr. Let A be the Generic Algorithm 3.7 with the equivalent with

. eg(yzgfymf,i).

As our assumption implies this to be nonnegative, the m
mum value off for y in the interval[0, 1] occurs fory = 0 or

y = 1. Since (3.12) is equivalent tf(y) < 1 for y € {0, 1},

this proves our claim.

parameters = ¢, n = 1/¢y, and the initial weightss; ; =1 ‘ ‘ )
for all . Let S = ((&1, v1), -, (@¢, ye)) be a trial sequence Z (1 — 9)* < min (1 — m1,:)% + Rl—nN
for which z, € [0, 1] andy; € [0, 1] hold for all ¢. Then P LSiSN ’ 2

the algorithm does not fail during the trial sequence, and its

. Note that if the range of; is not bounded, loss bounds of
regret satisfies

the above form cannot be attained. To see thatNet 2,
Vi a(S) <cpIn N and consider a one-trial sequence in which the first prediction
Proof: First note that by Lemma 3.10, the algorith vector is(—R/2, R/2). The outcome is chosen by an adver-
A does not fail. By Lemma 4.1, the prediétioni@ of the mzlary to.be either, = 1/2 + \/? o,r - :-_-R/2 - VK, ;
s . N § . depending on whether the algorithm’s prediction was negative
algorithm satisfyL(y:, 9:) < A(y:). We then proceed as in g\t Then the loss of the best expertfis and the loss of

the proof of Theorem 3.8, and obtain the claimed bound We algorithm is at leastR/2 + VK)? = K + RVEK + R?/4
choosingw,,; = 1 for all <. Thus if we letK grow, the regret of the algorithm grows as

Example 4.3:Let L be the relative entropy 10Be. We QU(VE). O
have Since the absolute loss.;,s does not even have a first
IL(y, z) —lny—In(l-y) —lnz+Ind - 2) d_erivative everywhereZ the technique of Lemma 4.1 does_not
oy give any results for this loss function. In the next subsection

so the second derivativé®L(y, z)/dy? = 1/y + 1/(1 — y) we devise a new algorithm particularly for this problem.

does not depend on Hence, ifc = 1 /7, the second derivative )

of the functiong of Lemma 4.1 is0, and (4.1) holds. Recall B- The Vee Algorithm

thatc;, = 1 for the relative entropy loss. Hence, by Theorem We now show how the loss bounds obtained for the absolute
4.2, if A is the Generic Algorithm 3.7 witkk = n = 1, we loss with binary outcomes can also be achieved when the out-
haveVy 4(S) < In N for any N-expert trial sequencé even comes are continuous-valued. The results of this section were
if the outcomesy, € [0, 1] are continuous-valued. 0 obtained independently by Vovk (private communication).
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We call our algorithm the Vee Algorithm. In choosing the We see in Lemma 4.6 that there always is a predicfipn
prediction it is now necessary to explicitly also consider othéhat satisfies (4.4) and that (4.4) implies— ¢:| < A(y) for
outcomes than jusy = 0 andy = 1. We will show that the all ¥ € [0, 1] and not merely fory € {0, 1}, which was the
prediction can still be computed in tim@(N log N). requirement in the Generic Algorithm. Hence, we now get

Algorithm 4.5 (The Vee Algorithm)As the Generic Algo- for continuous-valued outcomeg € [0, 1] the bound (3.20)

rithm 3.7, except that we have fixed the loss function to %hat was previously obtained for binary outcomese {0, 1}.
1

—\Yy— ote that if (3.20) holds fog; € [0, 1], it actually holds for all
the absol_utg Ios;, the parametdo be(2 In(2/(1+¢77)))™", y¢, provided we still have;, ; € [0, 1]. This is because moving
and predicting is done as follows. :

1, outside the range of the experts’ predictions increases every

Prediction: On receiving thetth input x;, let ¥ = |y, —x, ;| as much as it increaség — 4|, and the coefficient
e . = . -n i — A
) L ) ) V T 7 . t 7
{0, 1, @4 1 @, N} andwg 3 = wy /W n/(2 In(2/(1 4+ ¢~"))) that appears in front ofy, — z, ;| in
Predict with any valug}; that satisfies the condition (3.20) is greater thah. Again, the parametey can be tuned as

mentioned in Example 3.14, and the scaling method of Exam-
ple 4.4 can be used if the values ; are not in the rang@, 1].
For the absolute loss, (3.12) has a simple geometric interpre-
N tation. Fig. 1 gives an example of the graphs of the left-hand
In <Z vt,ie—ﬁly—ml> side |y — ¢| and the right-hand sidé(y) as functions ofy,
1=1

max{y - A(y)} < Sminfy+ Ay} (44)

where

fixing 4 = 0.58 andz = (0.33, 0.83, 0.97, 0.52). The left-
Ay) =

5 . hand side of the inequality is represented by a vee-curve with
2In [y its tip at (¢, 0). The graph ofA has a nondifferentiable tip
) o ] _at each valuey = ;. The condition (3.12) states that the
_Itis easy to see how the predictigh can be obtained in yee_cyrve must be below the graphzfat 4. For continuous-
time O() once the values valued outcomes we wish (3.12) to hold fgre [0, 1] and
N hence the vee-curve to be below the graphoéverywhere.
s(y) = Z vy, e M If we were to move the tip of the vee to the left @51, the
i=1 right arm of the vee would intersect the-curve at the value
have been obtained for all th& + 2 choices ofy. Let z;, ¥ = 0-97. Hence, the value of the maximum on the left-hand

be a vector that contains the components of the predictigifi® Of (4.4) is roughly0.51. Similarly, the minimum on the
vectorz, sorted into an ascending order. Thefs; < 2, ,,, ght-hand side is about.63, since moving the tip of the vee

for 1 < ¢ < N — 1. The vectorz, can be obtained in time OVer this value would make its left arm intersect thecurve at

O(N log N). Letw, be the vector obtained by applyingtp ¥ = 0.33. For binary outcomes we only required (3.12) to hold

the same permutation that appliedatp gives z,. Thus for y = 0 andy = 1, which gives the weaker condition that
the vee-curve must be below the graphfat the endpoints.

zj\:v explly — z 1]) = zj\:v, exp(ly — 2 1)) For binary outcomes, the loss bound (3.20) was previously

paet te § £ paet bt § ¢el shown for a whole family of algorithms defined by a number
- - of different prediction and update factors ; [6], as was

We show how all the sums(y) for y € {0,z 1, -, briefly explained in Example 3.14. In the continuous case

z+,n, 1} can be obtained in time (V) given the sorted we have less freedom. Suppose we were to use =
prediction vectorz;. To unify notation, writer; , = 0 and 1 _ (1— e M|y, — 2¢.5], and letN = 1, 2 = (0), andn = 1.

$;7N+1 = 1. Note that for0 < 7 < N + 1 we can write Then A(O) =0, so to Satisfy|y — ZA/| < A(y) for y =0 we

s(x, ;) = a; +b; where must choosej = 0. However, asA(0.2) =2 0.178, we cannot
j then havely — 4| < A(y) for y = 0.2. The Algorithm WMC
a; = Z A ) [25] does work for the continuous case, and is allowed to use
- any update that satisfies (3.21). However, its worst case bound
and hasl — ¢~ in the denominator instead @fln(2/(1+ ¢~ 7)),
N ) ) and hence it is slightly worse than the bounds given here.
b= 3 v e, As we noticed in Example 3.14, for binary outcomes it
i=j+1 was possible to choose the predictignas a function of the

). weighted average of the experts’ predictions. If the outcomes

We haveay, = 0, and by can be computed in tim&(N . = i
are allowed to be continuous-valued, this is not possible

Further, givena; and b; we obtaina;4; and b;4; in time

O(1) by any more. To see that there is no functign such that
, , 9 = f(3, v i1 ) guarantees (4.4) to hold, we consider

ajq = M g pu) two cases. First, let, = (0.3,0.7) andz, = (0, 1), so

and > v iwe s = 0.7. For the valuep = 1, the left-hand side

of (4.4) is approximately0.72, and we obtain a constraint
0.72 < f(0.7) for f. On the other hand, considering =
Hence, the predictiof,, if it exists, can be found in total time (1, 0) andz, = (0.7, 0) on the right-hand side of (4.4) gives
O(N log N). a contradictory constrainf(0.7) < 0.70.

7 7 7 7
bj-l—l = Cin(xt,jfmt,j{»l)(bj _ Ué,j—l—lein(mt’jﬂkliwt’j))'
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Fig. 1. Example graphs of the functions (above) andL,; (below).

We now show that a prediction that satisfies (4.4) alwaygherep = >, v;z;. This holds for all0 < p < 1 because the
exists and satisfies the conditions of Theorem 3.8. function In is concave.

A similar argument based on second derivatives shows
that for y € [0, 1], the valuey — A(y) obtains its max-
imum and the valuey + A(y) its minimum wheny €
{0, L, 241, -+, @, N ) O

Lemma 4.6:Let v, € [0, 1]V with >, v, = 1 andz; €
[0, 1]V, and lety > 0. Then a predictiorj, that satisfies (4.4)
exists. Further, (4.4) implielg— §:| < A(y) for all y € [0, 1].

Proof: We prove the existence df by showing that
Lemma 4.6 immediately implies the following result.

y—Ay) <2+ A(z) (4.5)
_ Theorem 4.7:Let S = ((#1, y1), -+, (®¢, ye)) be a trial
holds for ally, z, v;, andz;. Define sequence witkr; € [0, 1]V andy, € [0, 1] for all ¢. Let L be
N N the absolute loss and be the Vee Algorithm 4.5. We then
g, &y, 2) =Y > wivy exp(—nly — zi| + |7 — ) have .
i=1 j=1 —1In _W1/,1 +nlLoss, (&, S)
+ (y — 2)2 In(2/(1 + ™). (4.6) Loss (4, S) < 1
21
Then (4.5) is equivalent tg(v,, #:, y, z) < 1. The second o + e

derivatived?g(v, z, y, z)/9z? is defined and positive if; € for all i.
{0, y, z, 1}. Thus it suffices to showy(v, z, v, z) < 1
for N =4andz = z, = (0, y, z, 1). In this restricted V. FURTHER WORK

case, the second derivativ¥ g(v, ,, v, z)/0z? is positive _ _ o
if 2 ¢ {0, y, 1}. Furthermore, since\(z) > 0, (4.5) trivially One of the most challenging open .problems_ is to give tight
holds if = > y. Thus it suffices to show (4.5) for = 0, bounds for the regret of the prediction algorithm compared
y >0, andz = 2, = (0, ¥, 0, 1). Finally, since the second to the loss qf the best expert for even more'general classes
derivative 82¢(v, @, y, 0)/dy? is positive, we are left with of loss functions thaq thoseT co_nS|dered in t_h|s paper. When
the casez = 0, y = 1, andz € {0, 1}V, In this case, the the outcomesy, are l_)lnary, it might _be possible to produce
original inequality (4.5) can be rewritten as _such bounds for arbitrary loss fur_wctlons. The next challenge
is to extend the results for continuous-valued outcomes to
In((1—p)e"+p)+In(l —p+pe ) l+e™ more general loss functions. Another direction worth exploring

<1 . . .
2 = 2 is to let outcomes be discrete valued with more than two
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choices. The recent results of Chung [10] address some\sé first show that for ally, the sequencd/y,, U%, ---
these problems. converges in distribution td,. For all « € R we have
In this paper we restricted the predictions of the experts to N
lie between zero and one, except in specific examples where Pi[F, <a]=1- H (1 —Pr[F, < a])
we have indicated how scaling tricks can be used. It would be - -

nice to do a thorough investigation of how scaling the range le

of the variables affects the results. Bounding some norm of =1— H(l — lim Pr[UY% < a])

the prediction vector might also lead to interesting problems. iy fmo0

Restricting the range of the predictions of individual experts is N

related to bounding the infinity norm of the prediction vectors. = lim <1 — H(l —Pr[U} < a]))
It would be interesting to see whether the alternative update tmeo i=1

rules defined by (3.21) for the absolute loss work for other = lim Pr[UY, <],
loss functions. As we have seen, it is sometimes possible to £moo

obtain the prediction as a function of the weighted average which proves the claim.

the experts’ predictions. We would like to know exactly when Next we see that

this simplification is possible without weakening our bounds, y 14+p

or with weakening them only slightly. Eeep[lUf ()] < 2N (A1)

In this paper we have given bounds of the regret of owp|ds for ally whenp = 0 or p = 1. To see this, first note
algorithms over the loss of the best expert. A more challengiggat for all A C R, if UY(x) € A thenUY%(z) € A for at

problem is to bound the regret of the algorithms over the baghst one value. As the distribution of %, does not depend
linear combination of experts [9], [23], [24]. The only worspp, 4, this implies

case loss bounds for the latter case that have been obtained , ,
were for the square-loss function. Hopefully, some of the Pryep[U(z) € A] < N Preep[Uf (z) € A]
result; of the present.paper can be generalized to _the_llnﬁah is measurable. This implies
combination case. An intermediate case worth exploring is the
case of bounding the regret of the algorithm compared with E,cp[|UY(2)[' 7] < NE,cp[|U(2)|' 7]
the best “stretched” expert, i.e., an original expert multiplied ,
o =N [ UL |tPdp
by some positive constant. 1

<N[1+ / U |ttr dp
APPENDIX - < |Ufc|21| il
Lemma A.l:Let P be a probability measure ik and <N(1+ Eqep[UZ(z)?)

() a probability measure irY. For/ ¢ Ny andy € Y, —9N.

let U}, ---, Ux, be N independent identically distributed

random variables such that As the sequence’, UY,, --- converges in distribution to
F,, the bound (A.1) withp = 1 guarantees [3, Corollary, p.

Eqep[Uf(z)] = 0 292]
and Jlim Evep[Uly(a)] = E[F]

Var,ep[Uf(z)] = 1.
for all ¥ and, therefore,

Assume that there are independent identically distributed lim 7¢(y)Eucp[UY(2)] = E[F,]

random variables I, ---, Iy such that the sequence oo ¥

Uy, Ugy, -+ converges in distribution ta; for all i and with probability 1 for 4 drawn from@. The bound (A.1) with
y. Further, letry, 75, --- be functions onY such that , — ¢ implies

lims . r¢(y) = 1 holds with probabilityl for y drawn ,

according toQ, and |r«(y)] < B holds for ally for some [re()Eaze p[UZ (2)]] < 2BN

constants. Then and the bounded convergence theorem [3, Theorem 16.5, p.

| 180]
élim Eyco [7’4(y)Em€p Lmin Ufé(az)” = E[ min Fz} .

Jim Eyeqlre(y)Eae p[U%(2)] = EIE]
Proof: Write as claimed. O
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