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Sequential Prediction of Individual
Sequences Under General Loss Functions

David Haussler, Jyrki Kivinen, and Manfred K. Warmuth

Abstract—We consider adaptive sequential prediction of ar-
bitrary binary sequences when the performance is evaluated
using a general loss function. The goal is to predict on each
individual sequence nearly as well as the best prediction strategy
in a given comparison class of (possibly adaptive) prediction
strategies, calledexperts. By using a general loss function, we
generalize previous work on universal prediction, forecasting,
and data compression. However, here we restrict ourselves to the
case when the comparison class is finite. For a given sequence,
we define the regret as the total loss on the entire sequence
suffered by the adaptive sequential predictor, minus the total loss
suffered by the predictor in the comparison class that performs
best on that particular sequence. We show that for a large
class of loss functions, the minimax regret is either�(log N)
or 
(

p
` log N), depending on the loss function, whereN is the

number of predictors in the comparison class and̀ is the length
of the sequence to be predicted. The former case was shown
previously by Vovk; we give a simplified analysis with an explicit
closed form for the constant in the minimax regret formula, and
give a probabilistic argument that shows this constant is the best
possible. Some weak regularity conditions are imposed on the loss
function in obtaining these results. We also extend our analysis to
the case of predicting arbitrary sequences that take real values
in the interval [0; 1].

Index Terms—On-line learning, universal prediction, worst
case loss bounds, worst case regret.

I. INTRODUCTION

A SSUME that your data consists of a sequence
of binary outcomesthat is revealed to you one outcome

at a time. At each time step ortrial , after seeing the
outcomes , you mustpredict the next outcome

by producing a number . When the actual next
outcome is revealed, you then suffer a loss , where

is a fixed loss function. One example of this scenario is
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in producing sequential probability assignments for individual
binary sequences [29], [32], [33], [39]. Here is an estimate
of the probability that , given the previous outcomes

. In this case, the loss function is thelogarithmic
loss function, , which is defined by letting

if

and

if

That is, the loss is the negative logarithm of the probability
that was predicted for . This is closely related to the number
of bits required to encode given in an optimal
sequential adaptive coding method based on the sequential
probability assignments. Other possible loss functions are the
square loss , often used in the literature
on sequential forecasting [9], [13], [16], [36] and theabsolute
loss , often used in pattern recognition
and computational learning theory [6]–[8], [25], where the
term on-line is used to describe a sequential procedure of this
type. The absolute loss can be interpreted as the probability of
error in predicting when you use a randomized strategy of
predicting with probability and with probability .

In this on-line prediction setup, you play the role of an
adaptive algorithm orlearning algorithm, which produces the
predictions for each trial. Nature provides the sequence of out-
comes through some unknown process. Inuniversalor worst
caseprediction over individual outcome sequences, nothing at
all is assumed about the process used by nature to produce
the sequence of outcomes. The performance of the learning
algorithm is judged in the worst case over all possible outcome
sequences of length, for each . However, in order to make
the problem nontrivial, one only considers the performance of
the learning algorithm relative to the performance of the best
prediction strategy in a specified classof on-line prediction
strategies which we call thecomparison classor the set of
experts. Specifically, for every possible sequence
the total loss incurred by the learning algorithm for all trials
, , is measured, and from this we subtract the

infimum over all experts of the total loss incurred
by expert on this sequence. This difference represents a
regret suffered by the learning algorithm, measured as the
total loss it suffers minus the total loss it would have suffered
if it had used the advice of the expert in that performed
best on this particular sequence of outcomes. In particular,
for let be the constant predictor that always
predicts with , and let be
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the class of all constant sequential probability assignments
(memoryless encoding schemes). Then the minimax regret
for the logarithmic loss is (essentially) the redundancy of
the adaptive code for , i.e., the total number of
bits needed to encode this sequence of outcomes adaptively,
minus the number of bits that would have been required if

for all , which is the best constant prediction
for this particular outcome sequence. Extensions of this include
the case where consists of all Markov predictors of a given
order, or all finite-state predictors of a given number of states
[15], [26], [38].

Of course, since the learning algorithm must make its
predictions on-line, it cannot know ahead of time which
expert in will perform best on the sequence of outcomes
produced by Nature. Remarkably, however, the work on
universal prediction, forecasting, and data compression has
shown that in many cases the learning algorithm can achieve
surprisingly small regret, i.e., it can make predictions almost
as well as if it knew ahead of time which expert’s advice to
take [2], [4]–[7], [11], [14], [15], [17], [19], [20], [27], [28],
[30], [31], [33], [35], [37]. In particular, it has been shown that
the Lempel–Ziv algorithm universally achieves quite a small
regret when compared to the best finite-state predictor [15]. A
more general analysis of universal prediction is given in [31]
for a comparison class that is a smooth parametric family, and
in more general cases in [28]. Closely related work has also
been done in the area of mathematical finance, where one seeks
a stock portfolio rebalancing strategy that performs almost as
well as the best strategy in a given comparison class on any
market [12], [22]. More general decision-theoretic scenarios
are considered in [1], [10], and [37]. Also related is the work
on on-line competitive algorithms in computer science (see
e.g., [34]).

In this paper we focus on the case in which the comparison
class is finite. Our goal is to develop the most general results
possible for this finite case. Whereas most previous papers
(with the exception of [10], [35], and [37]) have each focused
on a single loss function, which has often been different in
different disciplines, we give a unified treatment of a very
general class of loss functions, including the usual ones.
Whereas in many previous papers, very specific forms for the
comparison class are studied, e.g.,th-order Markov models or
finite-state predictors of a certain size, here we obtain bounds
that hold for an arbitrary (finite) set of sequential prediction
mechanisms. They are even allowed to be dependent on each
other, in the sense that the prediction of one expert inat trial

can depend not only on the previous outcomes
but on the predictions of the other experts inup to and
including time as well. We use the term “experts” instead
of “statistical models” for the predictors in the comparison
class to distinguish this setting from a setting in which the
comparison class consists of simpler statistical models.

The standard universal prediction setting can be viewed
as a game between Nature and the learner. Nature selects
the sequence of outcomes, and the learner makes predictions
on-line and suffers some regret, as defined above, after all
outcomes have been seen. One is interested in the minimax
value of this game, that is, the minimum over all possible

prediction strategies of the maximum regret over all possible
outcome sequences. We call this theminimax regret. The exact
minimax regret depends strongly on the comparison class, and
even for simple comparison classes it does not usually have a
nice closed-form formula for each loss functionand length
of play [6], [10]. So here we focus instead on obtaining good
upper and lower bounds for the minimax regret.

Our upper bounds on the minimax regret are quite general,
in that they depend only on the number of experts in the
comparison class. So they in fact hold for a more challenging
game in which Nature chooses the (predictions of the) experts
in the comparison class in an adversarial manner, in addition
to choosing the outcomes. A game of this type was defined and
analyzed by Cesa-Bianchiet al. [6] for the absolute loss; here
we extend this analysis to more general loss functions. The
upper bounds we obtain on the minimax regret of this more
challenging game provide upper bounds on the minimax regret
of any standard universal prediction game. Our lower bounds
show that the leading constants in these general upper bounds
cannot be improved. However, the adversary construction in
these lower bounds does not require the full power available to
Nature in the more challenging game. In particular, the lower
bounds show that for large and there is always a set
of nonadaptive experts whose (predetermined) predictions for
times to can be known in advance to the on-line prediction
algorithm, and still this algorithm must suffer minimax regret
close to that given in the general upper bound, with respect to
the worst case outcome sequence.

Vovk [35] introduced an on-line prediction algorithm that
is applicable to all loss functions when the outcomes are
binary. This algorithm can be used to obtain good general
upper bounds on the minimax regret. For a large class of loss
functions, Vovk proved that for this algorithm, the minimax
regret was bounded by , independent of the number

of trials, where is a positive constant determined by
the loss function and is the number of experts in the
comparison class. For instance, for the square loss Vovk’s
algorithm achieves this bound with [35], and for
logarithmic loss with , when the natural logarithm is
used to define the loss function [14], [35]. On the other
hand, for the absolute loss , Cesa-Bianchiet al. [6] have
shown that the best general bounds on the minimax regret that
can be obtained are , and that the best possible
constant in this bound approaches for a large number

of experts, when the natural logarithm is used. Here there
is a strong dependence on the numberof trials. Slightly
weaker results for the absolute loss were obtained earlier by
Littlestone and Warmuth [25].

It is instructive to compare these general results obtained for
a finite comparison class of size and logarithmic loss to the
universal prediction results of Rissanen and others for smooth
parametric families of models, which form infinite comparison
classes. Indeed, Rissanen has shown that for the purposes of
universal prediction under logarithmic loss, essentially without
loss of performance, under suitable smoothness conditions one
can replace a continuous-dimensional comparison class of
models with a finite approximation to this class in which
the parameters are given to precision roughly , where
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is the number of data points (trials) [31] (see (27) and the
preceding equation). This gives a finite comparison class of
size . Hence in this case, Vovk’s bound of

on the minimax regret, where for logarithmic
loss, gives a bound of roughly , as obtained by
Rissanen, which is optimal apart from the additive constant,
supplied only by the deeper argument of Rissanen.

In this paper we give a simplified analysis of Vovk’s general
algorithm which yields an explicit definition of the constant

in the formula above for a wide class of loss functions
, including most usual loss functions, with the exception of

absolute loss. We also provide a probabilistic argument that
shows this is the best constant that can be obtained. Then we
define another class of loss functions that includes the absolute
loss, and prove that there is no general upper bound on the
minimax regret for any loss function in this class that is smaller
than . Thus for loss functions in this class, the
minimax regret will in general depend strongly on the number

of trials.
We make some weak regularity assumptions on the loss

function. It is possible to construct loss functions that are in
neither of our classes, and for which we thus do not know any
bounds. It is an open problem to provide nontrivial bounds
on the minimax risk that would apply toall loss functions.
Nevertheless, the classes we define cover such a broad range
of functions that we must conclude that the two asymptotic
forms of the minimax regret that are obtained, and

, are in some sense generic for this problem.
Section II gives a formal description of our framework of

analysis. Our bounds are given in Section III-A together with
a discussion of the regularity conditions assumed for the loss
function. Section III-B restates Vovk’s algorithm and upper-
bound proof, simplified for our purposes. The lower-bound
proof, given in Section III-C, is based on generating the
outcome sequence by a simple randomized adversary, using
simple randomly defined experts, and showing that already the
expected regret of the algorithm approaches the worst case
upper bound. Thus in a sense we see that in our particular
setting, the average case is almost as difficult as the worst
case. The proof technique with a randomized adversary was
used previously by Cesa-Bianchiet al. [6] in the special case
of the absolute loss.

Finally, in Section IV-A we show that for certain loss
functions, such as the square and logarithmic loss, Vovk’s
algorithm achieves the same worst case regret even if the
outcomes are allowed to be arbitrary real numbers in the
interval . In this case, the logarithmic loss is generalized
to the relative entropy loss,defined by

Combined with our lower bounds, this shows that the minimax
regret in this case is the same as for binary outcomes. For the
absolute loss, the worst case regret bounds proven for binary
outcomes [6], [35] can be achieved with continuous-valued
outcomes by using a slightly more complicated algorithm, as
we show in Section IV-B.

II. ON-LINE PREDICTION AND LOSS BOUNDS

We consider the predictive performance of an on-line learn-
ing algorithm on a sequence of outcomes ,
where for each . The algorithm’s
performance is compared to that of the best expert in a
given set of experts, each of which is
an arbitrary on-line prediction strategy. The prediction of the
expert for the outcome is denoted by and is a real
number in the interval . This prediction can depend on
the previous (and current) predictions of the other experts as
well as the previous outcomes. The vector of predictions by all
the experts for trial , called theprediction vector, is defined
by . When the algorithm makes its
prediction for the outcome , we assume that
it has access to all previous outcomes, as well as all previous
predictions of the experts, including the predictionsfor the
current trial . This is always true if the algorithm has access
to the previous outcomes and can simulate the predictive
mechanisms of the experts. However, our upper-bound results
also hold in more general cases in which the algorithm cannot
simulate the experts; see [6] for further discussion. Also, most
algorithms considered in this paper make their predictions
independently of the lengthof the whole trial sequence, but
in some situations we also consider how the algorithms can
be fine-tuned if is known in advance.

We define the ( -expert) trial sequenceas

and each pair is a trial . We consider separately the
cases ofbinary outcomes, with the outcomes either or

, andcontinuous-valued outcomes, with any real number
from the interval . The performance of the learner at trial

is measured by , where is a loss functionwith
the range , or sometimes . For binary outcomes

it suffices to consider the functions and
defined by and .

Example 2.1: The relative entropy loss is defined by

By the usual convention , this gives
and for . In the binary

case , the relative entropy loss is better known as
the logarithmic loss.

The square loss is defined by

Hence, for , we have and
.

The Hellinger loss is given by

Hence, for we have and
.

The absolute loss is given by ,
and we have and for
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It is worth noting some properties of the loss functions of
Example 2.1, since these will be important later. In each case,
the function is increasing and decreasing in , so the
loss increases as the predictionmoves away from
the outcome . The functions and are differentiable, and
by the previous remark, and for all .
Except for the absolute loss, the second derivatives and

are positive for all , which means that errors become
progressively more expensive as the difference between the
prediction and outcome increases.

Consider now a loss function and an on-line prediction
algorithm . Let be an -expert
trial sequence, and let the prediction of the algorithmat trial

of the sequence be . We then define

Loss

as the loss of the algorithm and

Loss

as the loss of theth expert on the sequence. We define

Loss Loss

to be theregret or additional lossof the algorithm, i.e., the
amount by which the loss of the algorithm exceeds the loss
of the best expert. We let

be the worst case regret for, when the outcomes in an
-expert trial of length are restricted to be binary. Here

we are formalizing the more challenging game in which
Nature is allowed to select both the outcomes and the pre-
dictions of the experts in an adversarial fashion. Finally,
we let be the smallest regret
obtainable by an on-line prediction algorithm. This is the
minimax value for this more challenging game. The goal of
this paper is to study for general loss functions ,
and to generalize the results for continuous-valued outcomes

.
Some general mathematical notation we will need is as

follows. We use E and Var to denote the expected value
and variance of a random variable. If we want to emphasize
the underlying probability measure, we write
and . The probability of an event according
to a probability measure is denoted by .

We use to denote the set of the positive
integers and to denote the set of real numbers.

III. B INARY OUTCOMES

We now consider the case of binary outcomes .
Our results include both upper and lower bounds for the
minimax regret. In Section IV we show how at least for the

usual loss functions, the upper bounds can be generalized to
allow for continuous-valued outcomes .

The main results are summarized in Section III-A. Section
III-B gives the algorithm that obtains the upper bounds, and
the proof that it does so. Both the algorithm and analysis are
originally by Vovk [35]; here we are able to simplify them
by considering only continuous loss functions. Section III-C
contains the main lower bound proofs. Finally, in Section III-D
we consider some other possibilities for lower bound proofs.

A. Main Results

The proofs of our upper and lower bounds require that the
loss function satisfies certain constraints. We first state the
main result with all the necessary restrictions and then discuss
the meaning of these restrictions. First, given loss functions
and that are twice differentiable, we define a functionby

(3.1)

and a function by

(3.2)

We then define a constant by

(3.3)

If for some , we write . Our main
result concerns the case where is finite. When is finite
and the loss function satisfies certain other conditions, we can
prove an upper bound and show that
the bound is asymptotically tight.

Theorem 3.1:Let be a loss function such that
, and are three times differentiable in ,

and and for . Assume that the
constant defined in (3.3) is finite and defined in (3.1)
is positive for . Then there is an on-line prediction
algorithm for which

(3.4)

holds for all and . Further, we have

(3.5)

where denotes a quantity that approachesas and
approach .

The algorithm that obtains the bound (3.4), as well as
the proof of the bound, are already given by Vovk [35]. The
algorithm makes its predictions independently of the length
of the trial sequence. We give the algorithm and a simplified
proof in Section III-B. Note that the lengthof the sequence
does not appear on the right-hand side of (3.4). The lower
bound (3.5) is based on a probabilistic proof that is given in
Section III-C. The lower bound holds also for algorithms that
get knowledge of beforehand.
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Example 3.2:Consider the loss functions of Example 2.1.
For these loss functions, we clearly have ,

, and . For the logarithmic loss we have

Further, is identically , and therefore . For
the square loss, we have for all . Further,

, and hence . For the Hellinger
loss, we have

Further,

and it is straightforward to show that is maximized for
. Hence, . For the absolute loss is

identically , so and Theorem 3.1 is not applicable
for the absolute loss.

For all typical loss functions the conditions
, , and hold. Thus Theorem 3.1

can be nonapplicable because , or because
for some . Since implies , these two reasons
often occur together. In Section III-C we prove the following
lower bounds, which show that if the denominator is not
always strictly positive, the regret cannot have an
upper bound that is independent of.

Theorem 3.3:Let be a loss function such that and
are three times differentiable in , and and

for all . Let be as in (3.1).

1) If for some , we have

(3.6)

2) If for some , or there are values
such that for all , we have

(3.7)

The special case of absolute loss was considered by Cesa-
Bianchi et al. [6]. They show that for the optimal algorithm

we have . For the absolute loss,
the denominator is for all . Thus our lower bound (3.7)
generalizes their lower bound for more general loss functions.
Unfortunately, in the case of general loss functions we know
of no corresponding upper bound.

Finally, it is possible that the value is infinite, but the
denominator is positive for all . We can construct an
example to show that such behavior is possible, although none
of the usual loss functions found in the literature exhibit it.
For such loss functions the results of this paper have no
implications whatsoever.

Example 3.4:Define a loss function by
and for some positive value .

We then have

Therefore, approaches as approaches or , and
is infinite. Hence, our results give no upper bound for

. However, the denominator is given by

and is hence strictly positive for . Therefore, we
have no lower bound, either. For this loss function it is an
open problem to define any bounds for .

Ignoring the artificially constructed special case of Example
3.4, our results for specific loss functions are divided based on
the sign of the function . For the logarithmic loss, the square
loss, and the Hellinger loss, the value is positive for
all , and Theorem 3.1 applies. For the absolute loss,
is zero everywhere, and Theorem 3.3 applies. To conclude
this section, we clarify the intuitive meaning of the function

by connecting it to Bayes-optimal predictions in a simple
probabilistic prediction game.

Let be a probability measure on , with
. For a prediction , the expected lossfor prob-

ability measure , or for bias , is

Here we define . For example, for the logarithmic loss
we have , but the expected loss for predictionis
defined to be for bias . For other biases it would be infinite.
A prediction is Bayes-optimalfor bias if it minimizes the
expected loss. Note that since we assumeand to be
continuous in a closed interval, the expected loss always has
a minimum value at some. This holds even if we allow
infinite losses. If is increasing and decreasing, then the
prediction is Bayes-optimal for bias and the prediction
for bias . If a value is a local extremum point
for the expected loss, then

(3.8)

If and , this implies

(3.9)

More generally, if either or is nonzero for a given
value , then there is a unique value for
which (3.8) holds, and hence cannot be a Bayes-optimal
prediction for more than one bias. If

(3.10)

holds in addition to (3.8), then is a local minimum point.
There may be one or more Bayes-optimal predictions for a
given bias.

Lemma 3.5:Let be a loss function such that and
are three times differentiable in , and and

for all . Let be as in (3.1). If for all ,
then for all biases there is a unique Bayes-optimal
prediction . If for all biases the Bayes-optimal prediction is
unique, then for all , and there is no interval
with such that for all .

The proof of Lemma 3.5 is given in Section III-C. We close
the section by applying Lemma 3.5 to specific loss functions.
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Example 3.6:For the logarithmic, square, and Hellinger
losses, as well as for the loss function of Example 3.4,
we have for all and hence a unique Bayes-
optimal prediction for every bias . The actual Bayes-optimal
predictions can be determined by straightforward calculations.
For the logarithmic and square losses we have . For the
Hellinger loss, we have

For the loss function considered in Example 3.4, with
and for some positive value

, we have

For the absolute loss, is identically zero, and there
must hence be at least one biasfor which there are more
than one Bayes-optimal predictions. Easy calculations show
that is the unique Bayes-optimal prediction for biases

and for biases . However, for the bias
any prediction is Bayes-optimal.

B. The Algorithm and the Upper Bound

We consider an algorithm first introduced by Vovk [35].
We give the general algorithm and its analysis, applied to our
situation in which the loss function is continuous. We then
work out as examples the details for several interesting loss
functions.

The algorithm has two positive real-valued parametersand
. We first introduce the algorithm in a somewhat open form,

leaving the parameters and unspecified and defining the
prediction only by giving a condition it must satisfy. For
the moment we also leave open the possibility that there is
no prediction that satisfies the condition, in which case we
say that the algorithm fails. The parametercan vaguely
be characterized as a measure for the error allowed for the
algorithm. The smaller the value, the tighter upper bound
we get for the regret assuming that the algorithm does not
fail. Hence, for applying the algorithm we need to find the
least value for which the algorithm is guaranteed to never
fail when thelearning rate is chosen suitably.

It turns out that for a loss function that satisfies the
assumptions of Theorem 3.1, the suitable choice is
and . This gives a bound . The
main part of the proof is in showing that for any choice
the algorithm is guaranteed not to fail for . We also
give a more direct way of choosing a predictionthat satisfies
the required conditions, provided that such a prediction exists.
Examples show that the seemingly complicated conditions for

are actually quite simple for the usual loss functions.
The algorithm uses an -dimensional weight vector

as its internal state. The weight is
always nonnegative and summarizes the performance of the
th expert in previous trials. At the end of theth trial we

have Loss , where consists of the
first trials of . Note that the weights are invariant
under permutations of the trial sequence. The predictions

of the algorithm are independent of the total lengthof
the trial sequence.

Algorithm 3.7 (The Generic Algorithm):Let be a loss
function and and be any positive constants.

Initialization: Set the weights to some initial values
.

Prediction: Let , where .
At the beginning of trial , compute for and
the value

(3.11)

On receiving the th input , predict with any value that
satisfies for and the condition

(3.12)

If no such value exists, the algorithm fails.

Update: After receiving the th outcome , let

(3.13)

To understand the algorithm, note that by (3.11) and (3.13)
we can write , where .
Hence, we can consider as a potential function, and
the condition means that at each trial, the
increase of the potential must be at least as large as the loss
of the algorithm.

In the case of the logarithmic loss, the key quantities in
the Generic Algorithm have a natural statistical interpretation.
In particular, it turns out that it is optimal to set , and
thus . This latter quantity
can be interpreted as the likelihood of under a probability
model used by theth expert. Hence the update (3.13) can be
interpreted as a Bayesian update of posterior probabilities
over the set of experts [6]. The additivity of the logarithmic
loss, and its associated statistical interpretation and chain
rule, makes the analysis of this special loss more convenient,
as pointed out in, e.g., [21]. In that paper, bounds for the
logarithm loss are obtained first, and then these are used, along
with certain inequalities, to derive bounds for other losses.
Here we obtain better results by using Vovk’s generalization
of the likelihood, , to directly obtain an analogous
chain rule for a general loss.

The basic idea of proving the upper bound for the loss of
the Generic Algorithm is based on relating the total potential
increase to the total loss of the best expert. The
following upper bound was already given by Vovk [35].

Theorem 3.8:Let be any loss function. Let

be an -expert trial sequence in which the outcomes
are binary. Assume that during this trial sequence, the
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Generic Algorithm 3.7 with parametersand does not fail
but produces at each triala prediction . Then for all the
total loss satisfies

Loss

Loss (3.14)

Proof: The condition (3.12) for together with
(3.11) and (3.13) implies

and hence

for all . Finally, by (3.13) we get

and the theorem follows.

For given values and , we say that the loss function is
-realizable if the condition (3.12) for and

can always be satisfied by a suitable choice of. To prove
the upper bound of Theorem 3.1, it now suffices to show that
a loss function that satisfies the assumptions of Theorem
3.1 is -realizable for . The result then follows
from Theorem 3.8 by setting for all . The rest of
this section gives our formulation of Vovk’s [35] proof for
these results.

We first develop an equivalent version of condition (3.12).
Write and , so the condition (3.12)
for can be expressed as and

. To obtain explicit bounds for from these
conditions, we need to have some notion of an inverse for
and . Assume that is continuous and strictly increasing
and is continuous and strictly decreasing in , which
is implied by the assumptions of Theorem 3.1. Thenhas
a continuous strictly increasing inverse that is defined in

, and has a continuous strictly decreasing
inverse that is defined in .

Consider first the case with and
. Then the values and

are defined, and (3.12) for can be equivalently
written as

(3.15)

A prediction that satisfies (3.15) can be found if and only if

(3.16)

If (3.16) holds, the prediction can be chosen to be an
arbitrary value between the bounds and .
For instance, their mean is a valid
choice for .

Consider now the possibility that the value or is
outside of the range of or , respectively. If, for instance,

is larger than , then the condition in
(3.12) holds for all . Thus the equivalence between (3.12)
and (3.15) will be maintained for all nonnegative if the
inverse is extended in such a way that the condition

holds for all when .
Hence, we say that is a generalized inverseof if

for all and
whenever . Similarly, is a generalized inverse
of if for all and
whenever .

For instance, if is the square loss , we have the
generalized inverses and
for , so (3.16) becomes

For the relative entropy loss we have
and , so we get

For the absolute loss we have and
, so we need to have

Our definitions of generalized inverses let us show the
equivalence between (3.15) and (3.12) for all values of
and .

Lemma 3.9:Assume that is a loss function such that
, is continuous and strictly increasing

in , and is continuous and strictly decreasing in .
For any generalized inverses and , the condition
(3.15) is equivalent to (3.12) for .

Proof: If , then both and
hold for all . If , then

both and hold for all .
Hence, we may assume that is in the range of and is
in the range of . In this case (3.12) and (3.15) are equivalent
because is strictly increasing and strictly decreasing.

We are now ready to show that if in Algorithm 3.7 we use
a value such that , where is as defined in (3.3),
and set , then the algorithm never fails.

Lemma 3.10:Let be any loss function such that
and are three times continuously differentiable,

, and as well as hold for
. Assume that the value defined in (3.3) is finite,

and defined in (3.1) is positive for all. Then for all
and such that and for ,
condition (3.16) holds whenever and .

Proof: For , define
and , and for in the range of define

(3.17)

Note that .
First, assume that holds for . We

are later going to show that this is in fact true if . Let
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and for .
Then for we have

and

The assumption implies

We get

from which condition (3.16) follows since is decreasing.
We now show that our assumptions on and imply

that for the function has a nonpositive second
derivative in the range of. We have and thus

. Differentiating further, we obtain

Since , we have if
and only if . By substituting

and

and using similar expressions for and , we see that
if and only if

Finally, since our assumptions imply

we conclude that holds if and only if .
Hence, is a necessary and sufficient condition for
having for all .

Note that above argument shows that the nonpositivity of
is also a necessary condition. If is positive on

some interval, by placing all the values in this interval
but not making them equal we get

and, hence, .
In particular, we see that since the Generic Algorithm 3.7

does not fail with the parameters and , we get
the upper bound claimed in Theorem 3.1 by applying Theorem
3.8 with the initial weights for all .

Theorem 3.11:Let be a loss function for which the
constant is finite. Let be the Generic Algorithm 3.7 with
the parameters , , and the initial weights

for all . Then for all and , the regret of the
algorithm satisfies

We are now ready to write the Generic Algorithm 3.7 in a
more explicit form for particular loss functions.

Example 3.12:If is the logarithmic loss, we have
and can therefore take in the Generic Algorithm
3.7. After simple manipulations we get
and , where is the weighted
average of the experts’ predictions. Hence,

and is the only prediction for which (3.12) holds for
with this choice of and . The loss bound we

obtain was previously shown by De Santiset al. [14] and Vovk
[35].

Example 3.13:Let be the square loss. Vovk [35] has
shown that the square loss is -realizable. Here the
result follows from Lemma 3.10 and Example 3.2. The note
after the proof of Lemma 3.10 further implies that the square
loss is not -realizable for any . Hence, we take

and in the Generic Algorithm 3.7 for the square
loss. The condition (3.12) for now becomes

(3.18)

By numerically substituting random values forand we
see that the seemingly natural choice usually
does not satisfy (3.18). More generally, there is no function

such that choosing would guarantee
(3.18) to hold. To see this, consider and set first

and . Then ,
and evaluating the left-hand side of (3.18) with these values of

and yields a bound . On the other hand, we
also have when and

, and evaluating the right-hand side of (3.18) with
these values gives the contradictory condition .
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Hence, the algorithm needs more information than is provided
by merely the weighted average of the experts’ predictions.

It can be proved that in the more restricted case that all the
experts’ predictions are in , we can guarantee (3.15)
for the square loss with instead of .
This gives a slightly improved bound. However, restricting
the experts to predict with binary values while allowing the
algorithm to predict with continuous values does not seem a
natural setting.

Example 3.14:Take to be the absolute loss. As now
, we know that the absolute loss is not -

realizable for any . We therefore let be arbitrary, and
see for which values the absolute loss is -realizable.

By using the bound that holds for
all , we obtain

where . By Jensen’s inequality, this is positive
for , and the prediction condition
(3.12) for becomes

(3.19)
Cesa-Bianchiet al. [6] have noted that (3.19) always holds

if we choose

but does not in general hold for . Hence, the weighted
average of the experts’ prediction provides sufficient informa-
tion for the prediction, but cannot be used directly.

The bound obtained by applying Theorem 3.8 for the
absolute loss with the choice ,
namely

Loss
Loss

(3.20)

was first proven by Vovk [35]. We would like to choose the
learning rate in such a way that the loss bound on the right-
hand side of (3.20) is minimized. This tuning of the learning
rate is discussed in detail by Cesa-Bianchiet al. [6], [7]. Here

we just cite some of the basic results. If all the initial weights
are and is chosen to be where

, the Generic Algorithm 3.7 for
absolute loss satisfies

Note that here it is necessary to knowbefore the first trial
in order to choose the learning rateappropriately. Similar
results can be obtained by basing the choice ofon an upper
bound for the loss Loss of the best expert instead
of on .

Finally, we consider the variations of the Generic Algorithm
given by Cesa-Bianchiet al. [6] for the special case of the
absolute loss. Instead of the update (3.13), we write more
generally and

and consider choices for the factors in addition to the
choice of the Generic Algorithm.
First, note that if , the proof of
Theorem 3.8 can easily be generalized to yield the same loss
bound. Second, note that the proof given for the inequality

is valid assuming

Hence, the algorithm works and gives the same worst case
loss bound for any choice

(3.21)

Interestingly enough, the weights obtained using

have a Bayesian interpretation [6].

C. Lower Bounds

This subsection contains proofs of the lower bounds for
stated in Theorems 3.1 and 3.3 in Section III-A.

The lower bounds hold even for algorithms that receiveas
input before the first trial.

The lower bound proofs are based on a probabilistic method.
We consider trial sequences in which the outcomes,
, are independent, identically distributed random variables

with some distribution (over ) and the experts’
predictions , , are independent,
identically distributed random variables with some distribution

(over ). We then derive for an arbitrary algorithm
a lower bound for the expected regret when the
trial sequence is drawn from this distribution. As clearly

holds for all , this yields a
lower bound for the minimax regret. Surprisingly, it turns out
that the lower bound derived from this simple probabilistic
setting is tight, i.e., it matches asymptotically the upper bounds
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derived assuming an arbitrary adversarial choice of experts
and outcomes.

We now outline the proof. First, consider arbitrary fixed
distributions and . Let be the
probability of drawing the outcome, or the bias of the
distribution . Define

to denote the expected loss of a predictionwith this bias.
Recall from Section III-A that any for which
is minimized is called a Bayes-optimal prediction for the bias
. Assume that is a Bayes-optimal prediction. Hence, the

expected loss

Loss

obtains its minimum when the algorithm is such that
for all . Therefore, also the expected regret is
minimized for this , and for the purposes of bounding this
expected regret from below we can without loss of generality
assume .

Note that this is true regardless of the experts’ predictions,
so we could even allow the algorithm to know all the ex-
perts’ predictions beforehand. Thus we are actually proving
the stronger result that there is a fixed choice of experts’
predictions such that for this choice the lower bound is always
achieved for some set of outcomes, no matter what prediction
algorithm is used.

Consider now the experts, choosing their predictions inde-
pendently according to a distribution. The two parameters
we need for our lower bound calculation are given by

and

We begin the lower bound proof by giving in Theorem 3.15
for large and a lower bound of the form

(3.22)

where is positive and independent of , , and and .
The first term on the right-hand side of (3.22) is simply the
expected loss for the optimal prediction algorithm, and the
second term is the expected loss for any fixed expert using
distribution . The final term shows how much better the
best expert of is expected to perform compared to a fixed
single expert. Obviously, this final term is large if there is
much variance in the experts’ predictions; this variance is here
measured by the parameter.

The bound of form (3.22) given in Theorem 3.15 holds for
any and , but is not likely to be useful unless and

are carefully chosen. Consider first choosingwhen is
already fixed. The simple case is the one in which there are
two distinct Bayes-optimal predictions for bias, say and

. This is covered in Lemma 3.17. Setting

yields a distribution with for all and ,
which substituted into (3.22) gives the desired result

The more interesting case, considered in Theorem 3.16, is
that is the unique Bayes-optimal prediction for bias, i.e.,

is the unique minimum point of . In this case, we choose
such that

where is close to zero. By estimating the loss functions
and by their second-order Taylor expansions around

we obtain values of and that substituted into (3.22) yield
, where is as in (3.2).

Notice that the bound still has an implicit dependence on,
as we assume that is Bayes-optimal for bias.

Now remains the choice of , or the bias . If even for
one bias there is more than one Bayes-optimal prediction, we
directly get the lower bound using this bias.
Otherwise, Lemma 3.18 shows that by varyingfrom to
we can also make the Bayes-optimal predictionvary over the
whole range from to . Thus a suitable choice of allows
us to replace in the bound by its supremum .

As a minor technical complication, there is a third case: if
for some bias there is a unique Bayes-optimal prediction,
but , we get a bound that is slightly weaker than

.
We now begin the actual proof. First we provide a bound

that holds for arbitrary distributions and .

Theorem 3.15:Let be a probability measure on and
a probability measure on . Assume that for and

, the condition holds for some
constant . Let be a Bayes-optimal prediction for. Let

and

Assume that for and the variance
is strictly positive. Then for all

there is an such that for all we have

(3.23)

where

Proof: Given and , we de-
fine an -expert trial sequence of lengthby
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For an on-line prediction algorithm, consider
as a random variable, with and drawn from the product
measures and , respectively. The expected value of
a random variable is clearly a lower bound for the supremum.
Combining this with the linearity of expectation, we get

Loss

Loss

Since this holds for any , we obtain (3.23) if we can prove
that

Loss

(3.24)

Our basic method in estimating the expectation on the left-
hand side of (3.24) consists of two steps. First, we apply
the central limit theorem to each of the random variables
Loss , and see that for large,
they have an approximately normal distribution. Second, we
apply known results that directly give the expectation of the
minimum of a set of identical independent normal random
variables. Both of these steps are relatively simple in them-
selves. Unfortunately, the random variables Loss
that give the losses of the various experts are not independent,
as the outcome sequenceaffects them all. Therefore, to make
the proof rigorous, we need to add some inelegant details by
first considering only an arbitrary fixed outcome sequence.

Let . Then

and

Given a sequence and , define

We also let

and

be the estimates obtained forand by using instead
of the true probability .

For and , let
be the loss of expertat trial , if is the sequence

of experts’ predictions and the sequence of outcomes. We
consider as a random variable on the domain .

We now define for and the random
variable in the domain by

to denote the loss of expertin the first trials. We also define
for a given sequence the random variable by

The underlying probability measures for these random vari-
ables are the product measures defined byand , so for a
fixed the random variables and are independent for

. To study the distribution of , we define a
suitably normalized random variable by

(3.25)

Then and . Further, since we have
assumed that , the Lindeberg form of the
central limit theorem implies that each one of thesequences

converges in distribution to a
standard normal random variable.

Let be independent standard normal
random variables. It is well known [18] that

where . Since for each , the sequence
converges in distribution to , we could now

apply various convergence theorems to show

where again . However, this is not quite
what we need. We are really interested in the expected mini-
mum of the variables that give the losses of the experts,
not of the normalized variables . As the denominator on the
right-hand side of (3.25) has a complicated dependence on,
the expectations of the normalized variables cannot readily be
transformed back to expectations of the original ones. To get
the desired result, we show that in considering expectations
in the limit of large , we get the same results if we replace

in (3.25) by its expected value.
Thus define . Then , and by

the strong law of large numbers we have
for almost all . We now apply the equation
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which we obtain directly by applying Lemma A.1, proved in
the Appendix. Intuitively, we have here merely changed the
order of taking the limit and taking expectations, and
taking a minimum of random variables. In other words, we
now have

E

(3.26)

We are now through the probability theoretic part of the proof,
and the rest is straightforward.

By partitioning the summations in (3.25) into two parts
according to whether or , we can write

By substituting this into (3.26), we obtain

Therefore, for all there is a value such that for all
we have

Loss

This implies (3.24), as desired.

We now see how Theorem 3.15 implies a lower bound for
when the probability measure for the experts is

chosen suitably. First we consider the case in which the Bayes-
optimal prediction is unique. The Bayes-optimal prediction
is the minimum point of the expected loss; the result has
two cases depending on whether the second derivative of the
expected loss is positive or zero at that minimum point.

Lemma 3.16:Let be a loss function such that and
are three times differentiable, and and
hold for . Assume that is a Bayes-optimal
prediction for bias .

1) If , then

where is as in (3.2) and denotes a quantity
that approaches as the values and and the ratio

all approach .

2) If , we have

Proof: Let be the probability measure on for
which . Let be an arbitrary on-line
prediction algorithm. For any probability measureon
and for any , we have by Theorem 3.15 for sufficiently
large the bound

(3.27)
where . For some positive parameter
define to give with probability and

with probability . We use some simple calculus
to approximate the right-hand side of (3.27) as a function
of , within accuracy . We then choose the value
that maximizes the approximated value. We also see that the
resulting value for is such that the terms can be safely
ignored when and approach infinity in the manner stated
in the lemma.

We can expand

where denotes a quantity such that

and similarly for . We now substitute these expansions into
the various quantities in (3.27). First, note that

so

Similarly, , and

We also have

so

Hence, , where

and

We first consider the case , which gives the first part
of the theorem. The main part of the bound is
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maximized by choosing . For this value of , we
get

since . By applying (3.9) to eliminate
we now get the claimed result, since .
Consider now the case , which gives the second part

of the theorem. We now have

where

By choosing we get

If the Bayes-optimal prediction for the bias is not unique,
we get an asymptotically stronger bound that grows asand

grow.

Lemma 3.17:Let be a loss function such that is
strictly increasing and strictly decreasing. Assume that for
bias there are two distinct Bayes-optimal predictionsand

. Then for all there is an such that for all
we have

where and

(3.28)
Proof: Let and be two distinct Bayes-optimal

predictions for some probability measureon . As
and are strictly monotone, the bias of cannot be or .
We define a probability measure by

and apply Theorem 3.15. Then

Further, we get

and, similarly,

Hence, is as given in (3.28). The result now follows from
Theorem 3.15 with either or .

Note that for strictly monotone and , the right-hand
side of (3.28) is strictly positive. For the absolute loss, we can
apply Lemma 3.17 with , , and . This
gives , and hence

which is the result obtained by Cesa-Bianchiet al. [6].
Recall that in Lemma 3.16 we had a lower bound in terms

of assuming that is the unique Bayes-optimal prediction
for some bias. We now show that either every valueis the
Bayes-optimal prediction for some bias, which allows us to
replace by its supremum , or else for some bias there
are multiple Bayes-optimal predictions, which gives us the
stronger lower bound of by Lemma 3.17.

Lemma 3.18:If a prediction is not Bayes-
optimal for any bias , then there are two predictions

and with such that for some bias both
and are Bayes-optimal.

Proof: Consider a prediction that is not Bayes-
optimal for any bias. Let be the set of biases for which
there is a Bayes-optimal prediction , and let be the
set of biases for which there is a Bayes-optimal prediction

. If we can show , we are done. Since
is never Bayes-optimal, we have . Hence, if
both and are closed, their intersection cannot be empty.

Suppose that is not closed. Let be a monotone
sequence of points in that converges to a point .
Let be a Bayes-optimal prediction for bias ,

. The sequence is also monotone and
converges to some limit . Let be a Bayes-optimal
prediction for bias . As , we have . Define

Since is Bayes-optimal for bias , we have
for all . Since is continuous, this implies

. As is Bayes-optimal for bias , so
is . Thus , a contradiction. A similar argument works
if we assume to be not closed.

We are now ready to combine our lower bounds into
one theorem. First, however, we wish to replace the vari-
ous assumptions concerning Bayes-optimal predictions with
assumptions about the function defined in (3.1). For this
purpose, we apply Lemma 3.5.

Proof of Lemma 3.5:Since we assume to be strictly
increasing and to be strictly decreasing, is the unique
Bayes-optimal prediction for the bias and is the unique
Bayes-optimal prediction for the bias.

Assume first that and are two Bayes-optimal pre-
dictions for some bias , with . Thus
the expected loss has local
minima at and , and, therefore, has a local
maximum at some value with . We then have

and . The condition implies
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, which substituted into
gives .

Assume now that for every biasthere is a unique Bayes-
optimal prediction. Then Lemma 3.18 implies that for all
there is a bias for which is Bayes-optimal, and we know
that this bias must be unique. Let denote the bias for
which is the Bayes-optimal prediction. We know that is
strictly increasing. Let . We then have

where . Since and are
strictly increasing, so is , and, therefore, the derivative
cannot be negative, and cannot be zero on any continuous
interval. As

the claim follows.

The lower bounds in Theorems 3.1 and 3.3 now follow
directly from the following theorem.

Theorem 3.19:Let be a loss function such that and
are three times differentiable, and and
hold for all . Let be as in (3.1).

1) If for , then

where is as in (3.3).
2) If for some , then

for all .
3) If for some , or for all

the values in some continuous interval, then

Proof: If for some bias there are two distinct Bayes-
optimal predictions, we have by Lemma 3.17 the bound

, which is the strongest of the
bounds claimed here. Thus we only need to consider the case
in which for each bias there is at most one Bayes-optimal
prediction. By Lemma 3.18, we then have for all predictions

a bias such that is Bayes-optimal. By Lemma 3.5, the
value is always nonnegative and cannot be zero on any
continuous interval.

Recall that when is Bayes-optimal for , the condition
(3.8) implies that has the same sign
as . If , then applying Lemma 3.16 Part 2)
with the bias that makes Bayes-optimal gives the bound

for all . If for
all , Lemma 3.16 Part 1) gives

for all , from which
follows.

D. Alternative Lower Bound Methods

The lower bounds we have proved are sufficient to show that
we cannot improve upon the constant in the upper bound
of Theorem 3.1. However, the lower bounds are based on
having both and approach infinity. It would be interesting

to get other bounds for, say, constantwith approaching
infinity. Except for some special cases, we do not really have
results along these lines. However, we give here some ideas
and arguments that could be useful for such work.

First notice that for the logarithmic loss, there is a simple
argument that shows the lower bound for

and .

Example 3.20:For arbitrary positive integer, let
and . Let be an arbitrary on-line prediction algorithm.
For the trials we choose binary prediction vectors

in such a way that the set of the experts’
prediction sequences contains
all the possible binary sequences of length. The
outcomes are chosen by an adversary in such a way that

if the prediction of the algorithm satisfies
, and , otherwise. Then at each trial the

algorithm incurs loss at least , and the total loss of the
algorithm will be at least . One expert will have
total loss , so we obtain . This matches
exactly the upper bound for given in Theorem 3.1
and Example 3.2 when is the Generic Algorithm 3.7.

Another way of thinking of this lower bound argument is
as follows. At the first trial, half of the experts predictand
half of the experts predict. After the trial, those that made
a mistake are eliminated, and those that were correct remain.
At subsequent trials, half of the remaining experts predict
and half predict . Thus at trial there are experts
remaining, each with cumulative loss, while the rest of the
experts have cumulative loss and have been eliminated.

Note that by considering a single trial this easily gives for
the logarithmic loss the bound . The general
lower bound for the logarithmic loss, when

and , can also be obtained by applying the
following Theorem 3.22 to this lower bound for .
Theorem 3.22 is proven using the following lemma.

Lemma 3.21:Assume that for all on-line prediction algo-
rithms there is an -expert trial sequence of length
such that , and that for all on-line prediction
algorithms there is a two-expert trial sequence of length

such that . Then for all on-line prediction
algorithms there is a -expert trial sequence of length

such that .
Proof: A -expertcoupledtrial sequence is a sequence

in which each instance has the property for
. A -expertsimpletrial sequence is a sequence

where each instance has the property

and

Note that -expert coupled trial sequences are essentially
-expert trial sequences and -expert simple trial sequences

are essentially two-expert trial sequences.
Since we assumed that for all prediction algorithms

there is an -expert trial sequence of length such
that , it follows that for all on-line prediction
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algorithms there is a -expert coupled trial sequence of
length such that . Similarly, since we assumed
that for all prediction algorithms there is a two-expert trial
sequence of length such that , it follows
that for all on-line prediction algorithms there is a -expert
simple trial sequence of length such that .

Now let be an arbitrary on-line prediction algorithm for
trial sequences of length . Given a trial sequence of
length , let denote the algorithm for trial sequences of
length that simulates the algorithm but processes the trial
sequence before the first actual trial. Our assumptions imply
that there is a -expert coupled trial sequence of length
for which , and that there is a -expert simple
trial sequence of length for which .
Let be the -expert trial sequence of length that
is obtained by concatenating and .

To complete the proof, we show that

Loss Loss

holds for some . Note that

Loss Loss Loss

We know that

Loss Loss

holds for some . Since is a coupled trial
sequence, this implies that for some we have

Loss Loss

both for and for . We also know that

Loss Loss

holds for some . Since is a simple trial
sequence, this implies that

Loss Loss

holds for all or for all . Hence,
we have

Loss Loss

and

Loss Loss

for or for , which proves the claim.

Again, the proof of Lemma 3.21 remains valid if the
algorithms are allowed to know the length of the trial sequence
beforehand. An obvious induction based on Lemma 3.21 gives
the following result.

Theorem 3.22:For any loss function and positive integer
, we have .

In particular, if for some con-
stant , then for , Theorem 3.22 implies

Hence, if we were able to prove

for the constant defined in (3.3), we would again obtain the
asymptotic lower bound stated
in Theorem 3.1. However, this new bound would be stronger
because the term approaches as approaches for all

of the form , whereas in the bound of Theorem
3.1 the term is stated to approach only when both
and approach .

To obtain the lower bound
given in Theorem 3.1 and Example 3.2 for the square loss by
applying Theorem 3.22, we would need to show

(3.29)

We conjecture that (3.29) indeed is true. We have numerically
obtained lower bounds such as , while

. (Obviously, is an increasing
function of , and by the upper bound
of Theorem 3.1 and Example 3.2.) These numerical results
are based on a recurrence we have not been able to solve
in a closed form. Note that for the square loss, the simple
construction used for the logarithmic loss does not yield an
optimal lower bound. If we have and , with

, we have for the
algorithm that predicts , and this bound falls short of
the required .

The preceding remarks show that for the logarithmic loss
we have

It is an interesting open question to see which loss functions
have this property. Theorem 3.22 gives

for all loss functions. To show equality it is sufficient to show

and our conjecture is that this is true for the square loss.

IV. CONTINUOUS-VALUED OUTCOMES

A. Applying the Generic Algorithm

We now show that under certain assumptions, The Generic
Algorithm 3.7 also works for continuous-valued outcomes

. These assumptions hold for the square and
relative entropy loss, but not for the absolute loss, which will
be considered in Section IV-B. We also consider the more
general situation where the values and are not in the
range .
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Lemma 4.1: Assume that for all , the func-
tion defined by satisfies

(4.1)

If (3.12) holds for binary values , then it holds for
all values .

Proof: We write (3.12) as . By
exponentiating both sides and applying (3.11), we get

(4.2)

Let us denote the left-hand side of (4.2) by . Then

so for the second derivative of we get

As our assumption implies this to be nonnegative, the maxi-
mum value of for in the interval occurs for or

. Since (3.12) is equivalent to for ,
this proves our claim.

Theorem 4.2:Let be a loss function for which the
constant is finite and the condition (4.1) holds for
and . Let be the Generic Algorithm 3.7 with the
parameters , , and the initial weights
for all . Let be a trial sequence
for which and hold for all . Then
the algorithm does not fail during the trial sequence, and its
regret satisfies

Proof: First note that by Lemma 3.10, the algorithm
does not fail. By Lemma 4.1, the predictions of the

algorithm satisfy . We then proceed as in
the proof of Theorem 3.8, and obtain the claimed bound by
choosing for all .

Example 4.3:Let be the relative entropy loss . We
have

so the second derivative
does not depend on. Hence, if , the second derivative
of the function of Lemma 4.1 is , and (4.1) holds. Recall
that for the relative entropy loss. Hence, by Theorem
4.2, if is the Generic Algorithm 3.7 with , we
have for any -expert trial sequence even
if the outcomes are continuous-valued.

Example 4.4: Let be the square loss . As the second
derivative is constant, the second derivative of
the function of Lemma 4.1 is whenever , and hence
(4.1) trivially holds. Since , we let be the Generic
Algorithm 3.7 with and . Then by Theorem
4.2 we have even if the trial sequence
contains continuous-valued outcomes.

Consider now the more general case that at trial, the
experts’ predictions and the outcome are in a known
range . Let

and

and let be the prediction of the Generic Algorithm when it is
given these scaled inputs and outcomes . Then Theorem
3.8 applies to this scaled sequence of trials. For an algorithm
that predicts with we then have the following
loss bound, if we choose and the initial weights to be
equal:

(4.3)

We can consider (4.3) as giving a loss bound similar to (3.14),
but with a loss function that changes dynamically as the ranges
of and vary. Note that achieving this bound requires
that and are known before the prediction is to be made.
This is the case, for instance, if the outcomeis assumed to
be within the range defined by the smallest and largest expert
prediction at trial . Another special case is that before the first
trial, we know that and will always be in some range

. We can then take for all , and (4.3) is
equivalent with

Note that if the range of is not bounded, loss bounds of
the above form cannot be attained. To see that, let ,
and consider a one-trial sequence in which the first prediction
vector is . The outcome is chosen by an adver-
sary to be either or ,
depending on whether the algorithm’s prediction was negative
or not. Then the loss of the best expert is, and the loss of
the algorithm is at least .
Thus if we let grow, the regret of the algorithm grows as

.

Since the absolute loss does not even have a first
derivative everywhere, the technique of Lemma 4.1 does not
give any results for this loss function. In the next subsection
we devise a new algorithm particularly for this problem.

B. The Vee Algorithm

We now show how the loss bounds obtained for the absolute
loss with binary outcomes can also be achieved when the out-
comes are continuous-valued. The results of this section were
obtained independently by Vovk (private communication).
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We call our algorithm the Vee Algorithm. In choosing the
prediction it is now necessary to explicitly also consider other
outcomes than just and . We will show that the
prediction can still be computed in time .

Algorithm 4.5 (The Vee Algorithm):As the Generic Algo-
rithm 3.7, except that we have fixed the loss function to be
the absolute loss, the parameterto be ,
and predicting is done as follows.

Prediction: On receiving the th input , let
and .

Predict with any value that satisfies the condition

(4.4)

where

It is easy to see how the prediction can be obtained in
time once the values

have been obtained for all the choices of . Let
be a vector that contains the components of the prediction
vector sorted into an ascending order. Thus
for . The vector can be obtained in time

. Let be the vector obtained by applying to
the same permutation that applied togives . Thus

We show how all the sums for
can be obtained in time given the sorted

prediction vector . To unify notation, write and
. Note that for we can write

where

and

We have , and can be computed in time .
Further, given and we obtain and in time

by

and

Hence, the prediction , if it exists, can be found in total time
.

We see in Lemma 4.6 that there always is a prediction
that satisfies (4.4) and that (4.4) implies for
all and not merely for , which was the
requirement in the Generic Algorithm. Hence, we now get
for continuous-valued outcomes the bound (3.20)
that was previously obtained for binary outcomes .
Note that if (3.20) holds for , it actually holds for all

, provided we still have . This is because moving
outside the range of the experts’ predictions increases every

as much as it increases , and the coefficient
that appears in front of in

(3.20) is greater than. Again, the parameter can be tuned as
mentioned in Example 3.14, and the scaling method of Exam-
ple 4.4 can be used if the values are not in the range .

For the absolute loss, (3.12) has a simple geometric interpre-
tation. Fig. 1 gives an example of the graphs of the left-hand
side and the right-hand side as functions of ,
fixing and . The left-
hand side of the inequality is represented by a vee-curve with
its tip at . The graph of has a nondifferentiable tip
at each value . The condition (3.12) states that the
vee-curve must be below the graph ofat . For continuous-
valued outcomes we wish (3.12) to hold for and
hence the vee-curve to be below the graph ofeverywhere.
If we were to move the tip of the vee to the left of , the
right arm of the vee would intersect the-curve at the value

. Hence, the value of the maximum on the left-hand
side of (4.4) is roughly . Similarly, the minimum on the
right-hand side is about , since moving the tip of the vee
over this value would make its left arm intersect the-curve at

. For binary outcomes we only required (3.12) to hold
for and , which gives the weaker condition that
the vee-curve must be below the graph ofat the endpoints.

For binary outcomes, the loss bound (3.20) was previously
shown for a whole family of algorithms defined by a number
of different prediction and update factors [6], as was
briefly explained in Example 3.14. In the continuous case
we have less freedom. Suppose we were to use

, and let , , and .
Then , so to satisfy for we
must choose . However, as , we cannot
then have for . The Algorithm WMC
[25] does work for the continuous case, and is allowed to use
any update that satisfies (3.21). However, its worst case bound
has in the denominator instead of ,
and hence it is slightly worse than the bounds given here.

As we noticed in Example 3.14, for binary outcomes it
was possible to choose the predictionas a function of the
weighted average of the experts’ predictions. If the outcomes
are allowed to be continuous-valued, this is not possible
any more. To see that there is no function such that

guarantees (4.4) to hold, we consider
two cases. First, let and , so

. For the value , the left-hand side
of (4.4) is approximately , and we obtain a constraint

for . On the other hand, considering
and on the right-hand side of (4.4) gives

a contradictory constraint .



HAUSSLER et al.: SEQUENTIAL PREDICTION OF INDIVIDUAL SEQUENCES UNDER GENERAL LOSS FUNCTIONS 1923

Fig. 1. Example graphs of the functions� (above) andLabs (below).

We now show that a prediction that satisfies (4.4) always
exists and satisfies the conditions of Theorem 3.8.

Lemma 4.6: Let with and
, and let . Then a prediction that satisfies (4.4)

exists. Further, (4.4) implies for all .
Proof: We prove the existence of by showing that

(4.5)

holds for all , , , and . Define

(4.6)

Then (4.5) is equivalent to . The second
derivative is defined and positive if

. Thus it suffices to show
for and . In this restricted
case, the second derivative is positive
if . Furthermore, since , (4.5) trivially
holds if . Thus it suffices to show (4.5) for ,

, and . Finally, since the second
derivative is positive, we are left with
the case , , and . In this case, the
original inequality (4.5) can be rewritten as

where . This holds for all because the
function is concave.

A similar argument based on second derivatives shows
that for , the value obtains its max-
imum and the value its minimum when

.

Lemma 4.6 immediately implies the following result.

Theorem 4.7:Let be a trial
sequence with and for all . Let be
the absolute loss and be the Vee Algorithm 4.5. We then
have

Loss
Loss

for all .

V. FURTHER WORK

One of the most challenging open problems is to give tight
bounds for the regret of the prediction algorithm compared
to the loss of the best expert for even more general classes
of loss functions than those considered in this paper. When
the outcomes are binary, it might be possible to produce
such bounds for arbitrary loss functions. The next challenge
is to extend the results for continuous-valued outcomes to
more general loss functions. Another direction worth exploring
is to let outcomes be discrete valued with more than two
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choices. The recent results of Chung [10] address some of
these problems.

In this paper we restricted the predictions of the experts to
lie between zero and one, except in specific examples where
we have indicated how scaling tricks can be used. It would be
nice to do a thorough investigation of how scaling the range
of the variables affects the results. Bounding some norm of
the prediction vector might also lead to interesting problems.
Restricting the range of the predictions of individual experts is
related to bounding the infinity norm of the prediction vectors.

It would be interesting to see whether the alternative update
rules defined by (3.21) for the absolute loss work for other
loss functions. As we have seen, it is sometimes possible to
obtain the prediction as a function of the weighted average of
the experts’ predictions. We would like to know exactly when
this simplification is possible without weakening our bounds,
or with weakening them only slightly.

In this paper we have given bounds of the regret of our
algorithms over the loss of the best expert. A more challenging
problem is to bound the regret of the algorithms over the best
linear combination of experts [9], [23], [24]. The only worst
case loss bounds for the latter case that have been obtained
were for the square-loss function. Hopefully, some of the
results of the present paper can be generalized to the linear
combination case. An intermediate case worth exploring is the
case of bounding the regret of the algorithm compared with
the best “stretched” expert, i.e., an original expert multiplied
by some positive constant.

APPENDIX

Lemma A.1: Let be a probability measure in and
a probability measure in . For and ,

let be independent identically distributed
random variables such that

and

Assume that there are independent identically distributed
random variables such that the sequence

converges in distribution to for all and
. Further, let be functions on such that

holds with probability for drawn
according to , and holds for all for some
constant . Then

Proof: Write

and

We first show that for all , the sequence
converges in distribution to . For all we have

which proves the claim.
Next we see that

(A.1)

holds for all when or . To see this, first note
that for all , if then for at
least one value. As the distribution of does not depend
on , this implies

if is measurable. This implies

As the sequence converges in distribution to
, the bound (A.1) with guarantees [3, Corollary, p.

292]

E

for all and, therefore,

with probability for drawn from . The bound (A.1) with
implies

and the bounded convergence theorem [3, Theorem 16.5, p.
180]

as claimed.
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