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SCHEDULING FLAT GRAPHS*
DANNY DOLEV+ AND MANFRED WARMUTH#

Abstract. The problem of scheduling a partially ordered set of unit length tasks on m identical processO,,: 8
is known to be NP-complete. There are efficient algorithms for only a few special cases of this problem. [ 3.
this paper we analyze the effect of the structure of the precedence graph and the availability of the processory % |
on the construction of optimal schedules. We prove that to find an optimal schedule it suffices to consider -
at each step only initial tasks which belong to the m — 1 highest components of the precedence graph, This
result reduces the number of cases we have to check during the construction of an optimal schedule. Our
method leads to polynomial algorithms if the number of processors is fixed and the precedence graph hag
a certain form. In particular, if the precedence graph contains only intrees and outtrees, this result leads tg &
linear algorithms for finding an optimal schedule on two or three processors. 31

Key words. identical processors, profile, optimal schedule, intree and outtree

by Hu[Hu61]. It pro

if the precedence gr
. to the Highest Leve

~ over tasks of lower
produces an optima -
" [Br81]. A restricted
F - graph is an interval
t two [Ga81]. Recent
i [DW82c] for sched

. breadth. In [Wa81],
_a profile of fixed bi
_constant. ‘
The major sche
arbitrary graph of ur
(m=3) of processo:
i< Let m be the br
_18 defined to be one

graph (see Fig. 3.1)
then the median is zc
f the precedence g
¢ higher than the :
- Our main resul
from the Elite of th:
0 not have enough

om the set of initi:
theorem can be app
90 The theorem rest
2 optima] schedule
8[Wag1], [DWS2c
In § 5, we gene
orem. We show
ither an inforest
Properties of g
aests). In §7 we 1

<

by Pgosvi\ng forest ¢

1. Introduction. The goal of deterministic scheduling is to obtain efficient
algorithms under the assumption that all the information about the tasks to be scheduleq
is known in advance. One of the fundamental problems in deterministic scheduling
to schedule a set of unit length tasks, subjected to precedence constraints, on a system
of identical processors. The precedence constraints between tasks are represented by':
a precedence graph, which is a directed acyclic graph. As in [GJ81] we allow the number’
of identical processors to vary with time. A profile is a sequence of natural numbers;
specifying how many processors are available at each time slot. A schedule for a given 3
profile is a partitioning of all the tasks into a sequence of sets which does not violate
the precedence graph. The ith set of the sequence is scheduled in the ith time slot (i.e.:
interval [i—1, i)). Thus, the cardinality of the ith set cannot exceed the number o
processors which are available in the ith time slot of the profile. A profile is straigh
if it has the same number of processors available at each time slot. The breadth of
profile is the maximum number of processors available at any time slot. ‘

Various aspects of scheduling theory have been studied extensively in recent years
[GL79] and many scheduling problems are known to be NP-complete [U175], [GJ79]
[LR78], [Wa81], [GJ81], [Ma81]. The first NP-completeness result on scheduling with
precedence constraints was published by Ullman [U175]. He showed that the existence
of a schedule of a given length on a straight profile for a collection of unit length tas
subjected to some given precedence constraints is NP-complete, if the number Of'
available processors is a variable of the problem. Notice that the breadth of the profi
is not bounded by a constant. The problem remains NP-complete even for certai
classes of precedence graphs [GJ81], [Mag1], [Wa81]. To support the idea that the
breadth of the profile is the main source of NP-completeness we prove in [DW82b
that scheduling unit length tasks is NP-complete even if the precedence graph h
height one and the profile has one processor available in each slot except for one sl
that has an arbitrary number (see Table 1.1). Polynomial algorithms have be
developed for only a few special cases. The first polynomial algorithm was develop
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TABLE 1.1
~ The question of existence of a schedule for a precedence graph of height
one and a profile of the below form is. NP-complete.

C T 111 =

‘ %‘” y Hu [Hu61]. It produces an optimal schedule for a straight profile of arbitrary breadth
i ,fthe precedence graph is an inforest. Hu’s algorithm produces a schedule according
f""}o the Highest Level First (HLF) strategy, meaning tasks of higher level are chosen

over tasks of lower level and tasks of the same level are chosen arbitrarily. HLF also
| § produces an optimal schedule for outforests and straight profiles of arbitrary breadth
- “[Br81]. A restricted version of HLF provides an optimal schedule when the precedence
graph is an interval order [PY79], [Ga82], or if the number of available processors is
g tWO [Ga81]. Recently, polynomial algorithms have been published [GJ81], [Wa81],
g [DW82c] for scheduling certain classes of precedence graphs on profiles of fixed
B breadth. In [Wa81], [DW82a] it was also shown that scheduling an arbitrary graph on

a profile of fixed breadth is polynomial, if the height of the graph is bounded by a
% ‘constant.

== The major scheduling problem remaining open is whether the scheduling of an
3 arbxtrary graph of unbounded height is NP-complete or polynom1a1 for a fixed number
€ (m>3) of processors.

2l Let m be the breadth of the profile. The median (see § 3) of the precedence graph
“is deﬁned to be one plus the height of the mth highest component of the precedence
& graph (see Fig. 3.1) and if the precedence graph contains less than m components,
: Ehen the median is zero. A task is initial if it does not have any predecessors. The Elite
- .+ of the precedence graph is the set of all initial tasks that belong to components that
: E are higher than the median.

é = Our main result, the Elite theorem (§ 4), states that it is enough to choose tasks
;;zfrom the Elite of the precedence graph for the first slot of an optimal schedule. If we
-: do not have enough tasks in the Elite, then we choose tasks according to highest height
m the set of initial tasks that are not in the Elite. After filling the first slot, the Elite
E- theorem can be applied to the remaining precedence graph and the next slot, and so
. The theorem restricts the number of cases that need to be considered for constructing
an optimal schedule. Variations of the Elite theorem are the basis for the algorithms
m[WaSl] [DW82c].

% In § 5, we generalize results of [Hu61] [Br81] and [GJ81] by applying the Elite
stheorem. We show that HLF produces an optimal schedule if the precedence graph
,g*?lther an inforest or an outforest and the profile is of a certain type. In § 6 we prove
20me properties of graphs containing only inforest and outforest components (opposing
°1"~‘-Sts) In § 7 we use these properties to develop a linear algorithm for scheduling

‘posmg forest on a straight profile of breadth three improving the O(n log n) time
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bound of Garey et al. [GJ81]." Furthermore, we give an O(nlogn) algorithm for _
scheduling an opposing forest on a profile that has two or three processors available As an exa;
at any time slot. The algorithm is essentially the one described in [D080]. graph G preser
’ we always assu
a schedule for -
a valid schedul

2. Basic definitions and properties. A precedence graph G is denoted by a tuple
(V, E), where V is the_set of n tasks and E the set of edges of G. A (directed ) path
a of length r in G is a sequence of tasks x, * * -, X,, such that the edge (x;, X;), for
0=i=r—1,is in E. We assume that if a task x has to be executed before a task y,
then there exists a (directed) path from x to y in G. Note that G is acyclic.

If there exists a path from x to y, then x is.a predecessor of y, and y is a successor
of x. In the case where the longest path from a task x to a task y is the edge (x, y),
we call x the immediate predecessor of y and y the immediate successor of x.

By h(G) we mean the height of G, which is the length of the longest path in G.

The M-schedul
schedule S’ of

For a task xe G (i.e., xe V) we denote by h(x) the length of the longest path that le

starts at x. Note that a task with no successors has zero height. Tasks with identical

height are said to be at the same level le
The graph G'=(V', E’) is a subgraph of G=(V, E), denoted by G'c G, if V'c V »

and for all x and y in G’, x is a predecessor of y in G’ if and only if x is a predecessor le

of y in G. A subgraph G’ of G is called a closed subgraph if every task in G’ has the
same successors in G’ as it has in G. For two graphs G=(V, E) and G'=(V',-E’),
GU G' denotes the graph (VU V', EU E’). The graph G=(V, E) is composed of
{G,, - -+, G,} if these subgraphs (called components of G) are a decomposition of G
into its connected components, that is, each subgraph is a nonempty connected graph -
and there are no edges between tasks of different components; therefore, G=U,; G.
A task of G is initial if it has no predecessors. Note that an initial task of G is not
necessarily of maximum height-in G. A set of k highest initial tasks is a subset of the
set of initial tasks consisting of some k highest ones; when there are less than k initial
tasks, it contains all of them. Let R be a set of initial tasks of a precedence graph G.
Then G — R is the subgraph of G obtained by removing the tasks of R

We partition the time scale into time slots of length one. The time interval [i—1, i)
for i=1 is the ith time slot. A profilee M, is a sequence of positive integers,
(m,, my, - -+, my), specifying the number of identical processors, m,, that are available '
in each time slot i, for i=i=d (see Table 2.1); d is the length of the profile M. The
breadth of profile M is the maximum number of processors that is available at any
time slot of M. Throughout the paper we denote the breadth of the given profile with
the letter m. The profile of Table 2.1 has breadth three. We call a profile M straight if
m=m, forall 1si=d

A schedule S for a precedence graph G is a sequence of sets (S),| - - - |[(S)« such
that: ‘

i) the sets (S); for 1 =i=k, partition the tasks of G;

ii) if x€(S); and y€(S),, for 1 =i=j =k, then there is no path from y to x.

The length of a schedule S, denoted by A(S), is the index of the last nonempty
set in the sequence. A minimum length schedule is called optimal The schedule S fits
the profile M if the length of S is not greater than the length of the profile and the
cardinality of (S); is not greater than m, The set of tasks (S); gets executed in the ith
time slot, that is |(S);| of the m; processors of slot i are executing the tasks of (S)i
during the time interval [i — 1, i). Note that the length of a task equals the length of a
time slot. We call the schedule S an M-schedule for G. C

highest initial t:
k= S or later. Note
- HLF_schedules
ls scheduled i
<10 the jth slot.

'In a revised version of [GJ81] Garey et al. also obtain a linear algorithm.
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- As an example assume we have a set of twelve tasks subject to the precedence
aph G presented in Fig. 2.1. We name the tasks by numbers. Throughout the paper
e always assume that the edges of the graphs are directed downwards. We look for
schedule for G that fits the profile M =(2,3,3, 1, 3, 2). The following sequence S is
valid schedule:. -

{1, 2}1{3, 4, 5}I{6, TH{8}{9, 10, 11}{12}.

‘he M-schedule S can be shown as in Table 2.1. Notice that A(S)=6. In Table 2.2 2
chedule S’ of length 5 is given for the same precedence graph, which is optimal.

1 2 3 4 5
level 2 /
level 1 (5
level O
- 8 9 10 11 12

FIG. 2.1. The precedence graph G.

TABLE 2.1
The schedule S for the precedence graph G of Fig. 2.1
and the profile M =(2,3,3, 1,3.2).

Vslat 1 2 3 4 5 6

p, 11 3ilelB19 L1
P, L2 | a4l 7 10
Py 5 11
m 2 3 3 1 3 2

TABLE 2.2
The schedule S' for G and M.

st 1 2 3 4 5 8

pp 1 l2l4l6 B
s P, | 5 13189 11
Pg 7 110 12
m 2 3 3 1 3 2

%20 The ith slot of a schedule S,1=i=A(S), has m; —|(S),| idle periods. Such an idle
_Period corresponds to a processor being idle during time slot i of S.

: . A schedule S is an HLF-schedule for G and M if (S), 1= i=A(S), is aset of m;
- highest initial tasks of the subgraph of G induced by all tasks scheduled in slot i of
§ or later. Note that in the above example S is a HLF-schedule, whereas S’ is not.
: LF-schedules have the following property. Assume task x is scheduled in slot i and
x.ls scheduled in slot j. If h(x)> h(y), then either i=j or there is a predecessor of x
in the jth slot. We say that HLF produces an optimal schedule if any HLF-schedule is




optimal; that is, if an optimal schedule can be constructed by choosing higher initial
tasks before lower ones and choosing arbtrarily among initial tasks of the same height.
' A schedule for G is greedy if whenever there is an idle period in some slot i then
this slot contains all initial tasks of the subgraph of G induced by the tasks that appear
in slot i or later. It is easy to see that any schedule can be made into a greedy one
without increasing its length; thus there exists greedy schedules which are optimal.

3. The median. In this paper we study graphs that have more than m components
(“flat” graphs), where m is the breadth of the profile. We use the notion of the median
to characterize this property of a precedence graph. -

DEeriniTION. The median of a precedence graph G with fespectto a given breadth
m, denoted by u(G), is one plus the height of the mth highest component of the
precedence graph.

Thus the graph of Fig. 3.1 has median 3 with respect to m=3. If the graph has
fewer than m components the median is 0. For example, in the graph described by
Fig. 2.1 the median with respect to m = 3is 0.

0
| B 0 o m=3
>( - ----p@) =3
(N . t;} . VJ
H(G) | L(G)

FIG. 3.1. The decomposition of a graph G into H(G) and L(G): 0 denotes tasks of E(G).

We use the median to partition the components of G into two sets, H(G) and

L(G) (see Fig. 3.1).

. DeriniTION. The closed subgraph H(G) consists of all components of height
higher than the median, and L(G) contains all the components that are at most as
high as the median.? The set of all initial tasks of H(G) is called the Elite of G,
denoted by E(G).

During the construction of a schedule, the median is a dynamic line. When 2 set

" of initial tasks is removed, the median might increase, because some components of
the graph might split into several components. On the other hand, the median can
drop at most by one. If it drops by one, then some initial tasks of L(G) were removed.

If only tasks of H (G) are removed, then the median does not drop. This leads to the

 following properties which are used in the current paper and in [DW82c].

2 A1l the results of this paper will still hold if we define H(G) to be the closed subgraph that contains
all initial tasks of height higher than the median plus all their successors, and L(G) to be the remaining
subgraph. See also [DW82b]. ’
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Properties of the median:
M1: There are at most m —1 components of G having height at least u(G).
M2: If u(G)>0, then there are at least m components of G having height at
s p(G)-1
M3: If G has at most m—1 components of height at least h, then p(G)=h.
- M4 If G has at least m components of height at least h—1, then u(G)= h.
~ M5: Let R be a set of initial tasks of G. Then ;.L(G-R)_Z_;.L(G)— 1.
~ Mé6: Let R be a subset of E(G). Then /J.(G—R)_?-_p.(G). Furthermore, H(G —
cH(G)-R and LG-R)2L(G). -
M7: Let T be a set of highest initial tasks of L(G). Then H(G - T)< H(G) and
6-T)2L(G)-T ‘
~ M8: Let Rbeasubsetof E(G) and T be a set of highest initial tasks of L(G).Then

H(G-(RUT))c H(G)-R and L(G—(RU ) =2L(G)-T

“ne proofs of the properties M1 through M4 follow directly from the definition of
edian. The proof of M8 is a simple consequence of M6 and M7. To prove the

maining properties the following claim is needed. :

l CLAIM 3.1. Let I be a component of G and let R be a set of initial tasks of G. Then

n(Iy=h(I-R)Zh(I)—1.

Proof. The claim trivially holds if A(I) =0. Thus assume that h(I) is positive. The
et R contains only initial tasks of I; therefore, the longest path in I— R is by at most
yne shorter than the longest path of I Thus, h(I-R)=h(I)—1 and clearly, h(I)=
1(I-R), which completes the proof. O -

Proof of M5.

MS5. Let R be a set of initial tasks of G. Then u(G—R)Z n(G)—1. :
M5 is clearly true if w(G)=1. Thus assume that u(G)> 1. By property M4 we
only have to show that G - R contains at least m components having height at least
p(G)—2. To do this observe that by property M2 the graph G contains at least m
components of height at least p(G)—1. By Claim 3.1, (I-R)= p(G)—2 for every
component I of G that satisfies h(I)= u(G)— L Therefore, the subgraph I —R of

G- R has at least one component of height at least n(G)—2, and G - R has at least
m components of height at least u(G)—2.

Proof of M6. '

M6. Let R be a subset of E(G). Then ;L(G—R)zp,(G). Furthermore, H(G-
R)c H(G)—R and L(G—-R)2L(G).

The second part of M6 is a simple consequence of the fact that u(G—R) = w(G).
Readily this inequality holds if u(G)=0. So assume w(G) is positive. To prove that
r(G-R)= u(G) we need to show that G—R contains at least m components of
height u(G)—1 (see property M4). If I is a component with h(I)=u(G), then I is

" in L(G) and therefore I =1I—R. Also, if h(I)> p(G), then by Claim 3.1, h(I-R)Z=
 k(G). This completes the proof, because by property M2, G contains at least m
components I, satisfying h(I)zp(G)-1, and for each such component I the corre-
_ sponding subgraph I— R of G— R contains at least one component of height at least
: MG)-1. '
& Proof of M7. ‘ '
%% MT7: Let T be a set of highest nitial tasks of L(G). Then H(G—T)< H(G) and
LG-T)2L(G)-T. |
“ Assume that M7 does not hold for some G and T. Then u(G-T)<u(G), and
by Ms, w(G-R)= pn(G)—1. For the median to drop, T must contain an initial task

4o
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of L(G) of height u(G)—1. Since T is a set of highest initial tasks of L(G) it follows _
that T contains all tasks of L(G) of height x(G) (which are all initial). Therefore, we #
conclude that L(G-T)< L(G)- T and thus H(G—T) 2 H(G). But this contradxcts
the assumption. 0O
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4. The Elite theorem. In this section we present our main result, the Elite theorem 7 Define §'=(r¢
Let M =(m,,* -+, my) be a given profile of breadth m. The Elite theorem states that fg "':G, and that it satjy¢
to find an optlmal schedule for G it suffices to “look™ at the Elite of G. In particular, % L = a) If A(S)=,
if the cardinality of the Elite is larger than m,, then there exists an optimal M-schedulc #8& assumption S is ne
for G that starts with a subset of the Elite. Otherwise, there exists an optimal M-schedule * § b) Otherwise,
starting with E(G) and m, —| E(G)| highest initial tasks from L(G), choosing arbitrarily = § A(S*)+1, whichir,
among tasks of the same height. #§ § has idle procesy;
The Elite theorem enables us-to ignore large portions of the graph at each step implies that S’ is g
of the construction of an optimal schedule. As a special case, the Elite theorem alsq = § slot. This complets
implies that if there is no initial task above the median, then HLF produces an optima] - Now we are r=
schedule. kA THEOREM 4.2,
Results similar to the Elite theorem were developed in [Wa81] and [DW82c]. They . of breadth m. Ther.
are the basis for several polynomial algorithms which find optimal schedules for certain - § i) fE(G) o
restricted classes of precedence graphs and profiles of constant breadth. The Elite - G and M that stan-
theorem is easily derived from the following theorem. ] ii) If E(G) ¢
THEOREM 4.1. Let S be a greedy M-schedule for H(G) not longer than the length . G is a first slot of s
of an optimal M-schedule for G. Let f be the number of idle processors at the first slot of B iii) If E(G)=
S. For any set T of f highest initial tasks of L(G), there exists an optimal M-schedule S idle periods only in .
for G with the properties: 5 : Proof. The pro
i) (8),=(8),UT; < §  there exists an opy
ii) if A(S")> A(S) then S’ has idle periods only in its last slot. 2§ there exists an opt:
Proof. The proof is by induction on r, the number of tasks of G of positive height. - § E(G) is empty, the
In the case r =0 the graph does not contain any tasks of positive height and therefore, ' for H(G). O
all the tasks of G are initial and the theorem obviously holds. ' . F We will demo
- Assume that the theorem holds for every precedence graph of fewer than r+1 + § schedule the precec
tasks of positive height and let G be a graph with r+1 such tasks. We distinguish - E which has breadth -
between two cases, according to T", the set of initial tasks in L(G). ‘ . In Fig. 4.1, ui-
. Case |T'| < f. Thus, the number of initial tasks in L(G) is less than f whichisthe ~ § choosing m,(3) of t
number of idle processors at the first slot of S. In this case (S), contains all the initial - f Elite of the graph.
tasks of H(G), since we assumed that S is greedy. Furthermore, T=T" and (S);UT [ schedule. For exar

optimal schedule. k
among the tasks i
... tasks,
i If the preceder
_there exists an opti
the graph we obtai
(E(Gy)=0) and t
schedule for this g
schedule for Gj, ai
i LEMMA 4.1. L
Jor G and M is bou
bounded by A. O
i The following
J!S'eful in showing
Precedence graphs

is the set of all initial tasks of G. This implies that G contains fewer than m;=m . Y 4
components; therefore, u(G) =0, all the tasks in L(G) are initial and L(G) = T. Thus
the schedule

S§'=((8) U DIS) - - I(S)as

for G has the same length as S, which 1mphes the optimality of the schedule §' for G -
and M. 3
Case |T'|= f Let A be the length of an optimal M-schedule for G, then b
assumption, A(S)=A. Let T be a set of f highest initial tasks of L(G). Denot
G=G-((8);UT) and let S* be the schedule obtained from (S),|- - -|(S)xs) bY-:
removing all tasks not in H(G) and making the resulting schedule greedy. Clearly -
A(S*)=A-1.
By M8 H(G)< A(G)—(S),, which assures that S* contains all the tasks of H (6
Denote by A the length of an optimal schedule for G that fits M = (m,, « - -, my). Sinc® .
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; is the length of an optimal schedule for G, A—1=3}, and therefore A(S*)=A.
Moreover, the graph G contains fewer than r+1 tasks of positive height, because
fs)l U T contains at least one task of positive height. Thus, the inductjve hypothesis
“‘can be applied to S*, ensuring the existence of S, an optimal M-schedule for G, with
‘ the property of having idle processors in its last slot in the case A(S)> A(S*).
i+ Define $'=((S),U T)|S. We have to prove that S’ is an optimal M-schedule for
G, and that it satisfies ii). Consider the following two subcases:
' a) If A(S)=A(S’), then S’ is clearly an optimal M-schedule for G, since by
~ assumption S is not longer than the length of an optimal M-schedule for G.
b) Otherwise, A(S")=A(S)+1>A(S). By the definition of S* we get A(S)=
A(S*)+ 1, which implies A (§) > A (S*). Now, the inductive assumption guarantees that
§ has idle processors only in its last slot. Since (8),U T has no idle processors, this
‘ _implies that S’ is an optimal M-schedule for G with idle processors only in its last
slot. This completes the proof. 0O
Now we are ready to prove the basic result of the paper.
THEOREM 4.2. The Elite theorem. Let G be a precedence graph and M be a profile
of breadth m. Then '
- i) If E(G) contains more than m, tasks, then there exists an optimal schedule for
G and M that starts with m, initial tasks of E (G). '
ii) If E(G) contains m, tasks or fewer, then any set of m, highest initial tasks of
G is a first slot of some optimal M-schedule for G. .
iii) If E(G)=, then HLF produces an optimal schedule for G and M that has
idle periods only in its last slot.
Proof. The proof follows from Theorem 4.1 and the fact that if |E(G)| = m,, then
there exists an optimal schedule for H(G) and M that starts with E (G); otherwise
~ there exists an optimal schedule which starts with a subset of E (G) of size m,. If
~ E(G) is empty, then H(G) is empty and the empty sequence is an optimal schedule
for H(G). O
We will demonstrate the Elite theorem on a few examples. Assume we need to
schedule the precedence graphs of Figs. 4.1 and 4.2 on the profile M =(3,3,2, 1, 3),
- which has breadth three. '
' In Fig. 4.1, u(G,) =0 and therefore, in finding an optimal schedule, we start by
- choosing m,(3) of the four tasks that are above the median. These four tasks are the
~ Elite of the graph. Not every subset of three tasks of the Elite begins an optimal
- Schedule. For example, if we choose {1,2,3} as the first slot we would not get an
optimal schedule. By the Elite theorem we know that there exists a set of three tasks,
among the tasks in the Elite, that starts an optimal schedule. In G,, {1, 2, 5} are such
tasks,
w. Ifthe precedence graph is the one given in Fig. 4.2, the situation is much simpler:
_there exists an optimal schedule starting with E(G,), and if we remove this set from
the graph we obtain the graph described in Fig. 4.3. The Elite of this graph is empty

|
[
|

E(E(Gé) =(J) and thus, as we proved in the Elite theorem, HLF produces an optimal
éSChedule for this graph. Therefore, the tableau T3 of Table 4.1 describes an optimal
gff}’ledule for G3, and T, describes an optimal schedule for the whole graph G,.

§7- LEMMA 4.1. Let G’ be a closed subgraph of G. If the length of any HLF-schedule

J‘_" G and M is bounded by A, then the length of any HLF-schedule for G' and M is also

Lbounded by A, O ‘ -

%*3; The following results follow from the Elite theorem and Theorem 4.1, and are
g“ffm in showing that HLF produces an optimal schedule for certain classes of
WCedence graphs and profiles.
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Gl: 1 2 3
'\I/ 5
l m ------ #:0
6 v B8 9 10 11 12
E(Gl)=§1.2.3,5§
}=(3,3,2,1,3)
Fic. 4.1
Gy 1 2 3
5
...... p.=1
! . L ]
| 6 7 8 9 10 11 12
‘ B(Go)=11.2.3}
=&|3n llls)
F1G. 4.2
Gz‘: 4 5
A\ a
6 | 7 B 9 10 11 12
_ E(Gy)=¢
F1G. 4.3
TABLE 4.1.
The profile schedules for the graph G5 and Gz.
slot 2 3 4 5 slot 1 2
To: P, 4 6 | 8 9 To: P, 1 4 6
Ps 5 | 7 10 Py 2 | 5 | 7
Py L12 11 Y < T B -

LeMMA 4.2. Let A be the length of an optimal M-schedule for G. If A bounds the ..
length of every HLF-schedule for H(G) and M, then HLF produces an optimal M-schedule ¥
for G. In particular, if HLF is optimal for H(G), then HLF is optimal for G.

Proof. The proof is by induction on the number of tasks of positive height in G
The case of no task of positive height is trivial. Assume that the lemma holds for every =:
precedence graph of up to k tasks of positive height and let G be one with k+
tasks. Let T be any set of m, highest initial tasks of G. Denote by G=G-T the
remaining subgraph, and by M’ the remaining profile. It is enough to show that;

a) There exists an optimal M-schedule for G starting with T.

b) HLF produ
Proof of a). If
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an optimal schedult
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;;, b) HLF produces an optimal M'-schedule for G".
L &5 Proof of a). If |E (G)|=m,, then by the Elite theorem there exists an optimal
. M-schedule for G starting with T. Otherwise T < E(G), and by assumption it starts
T a schedule for H(G) and M of length at most A. Theorem 4.1 implies that it also starts
- § ¥ an optimal schedule for G and M.
Proof of b). The subgraph G’ contains fewer than k+1 tasks of positive height
' pecause T contains some. Since T starts an optimal M-schedule for G the length of
~ an optimal schedule for G’ is A —1. A bounds the length of every HLF-schedule for
- H(G)and M. Therefore A — 1 bounds the length of every HLF-schedule for H (G)-T
" and M'. By property M8 of the median, H(G') = A(G)-T, and thus, by Lemma 4.1,
the length of every HLF-schedule for H(G') and M’ is bounded by A —1. Using the
inductive assumption we conclude that HLF produces an optimal schedule for G’ and
M. O K ' _

5. HLF for inforest and outforest. In this section we study inforests and outforests,
and analyze whether HLF produces an optimal schedule for such precedence graphs.
An inforest (respectively outforest) is a graph in which each task has at most one
immediate successor (respectively one immediate predecessor). HLF is optimal for

: specific types of profiles. :

o - A profile M is nondecreasing (resp. nonincreasing) if m; = m;,, (resp. m; = m,),
| for 1=i=d —1; that is, the number of available processors does not decrease (resp.
not increase) along the profile. ’

' The results obtained in this section hold for more general types of profiles. We
will see that if the profile is nondecreasing or nonincreasing but its amplitude of
variation is bounded by one, then the complexity of the algorithms does not change.

We say that M is a zigzag profile if the following two conditions hold:

i) m;+ 1= m; for all ij such that 1=sisj=d

L ii) mj+lz—m,~;forallijsuchthatléiéjéd. _
If condition i) holds, then M is called a nonincreasing zigzag profile; if ii) holds,
then it is called nondecreasing zigzag profile.

The profile of Table 2.1 is neither a nonincreasing nor a nondecreasing zigzag
profile, since m,—ms=-2 and my—m;=-2, respectively. In Table 5.1 we give an
example of a nonincreasing zigzag profile; the profile is M = (5,4,5,2,3,3,1). Itis a
nonincreasing but not a nondecreasing zigzag profile, since m;—m;= —4.

-

TABLE 5.1
A nonincreasing zigzag profile.

slot 1 2 3 4 5 6 7
P, » ]

"~ Three HLF results for forests have appeared in the literature. The first and basic
one is by Hu [Hu61] who showed that HLF produces an optimal schedule for inforests
- and straight profiles. Bruno [Br81] proved that HLF is optimal for outforests and
- straight profiles. The third result is by Garey et al. [GJ81]; they proved that HLF works
‘ ___fOr inforests and nonincreasing profiles in which m,—m, = 1. We prove that HLF is

B S e




optimal if the precedence graph is an inforest (resp. outforest) and the profile is L G
nondecreasing zigzag (resp. nonincreasing zigzag). Note that scheduling an inforest =
(resp. outforest) on a nonincreasing (resp. nondecreasing) profile is NP-hard if the "
breadth of the profile is arbitrary [GJ81], [Ma81],[Wa81] and polynomial if the breadth
of the profile is constant [GJ81], [Wa81], [DW82c].

"THEOREM 5.1. Let G be an outforest and M be a nonincreasing zigzag profile of
breadth m. Then HLF produces an optimal M-schedule for G.

Proof. 1t suffices to prove the following: let H be an outforest, M be a nonincreas.
ing profile of breadth m; then for any set of m, highest initial tasks of H, there exists
an optimal M-schedule starting with this set. Note that if H contains less than m,
initial tasks, then the set of all initial tasks are the only set of m, highest initial tasks,

We prove the theorem by applying the Elite theorem and using the inequality

(*) | -~ E(G)=m—-1=m, G

The inéquality m — 1 = m, holds because M is a nonincreasing zigzag profile of breadth
m. By the definition of H(G), it has fewer than m components. Each component of
H(G) is an outtree having one initial task, and this task is the only task from that
outtree in the Elite of G. This implies that the Ehte of G has fewer than m tasks and
(%) holds. O v :

We now prove a similar result for inforests. Let G be a precedence graph; denote
by G, the subgraph of G obtained by removing all tasks of height zero. Observe that
an optimal schedule for G, is at least by one shorter than an optimal schedule for G,
since the last slot of any schedule can only have tasks of height zero.

THEOREM 5.2. Let G be an inforest and M be a nondecreasing zigzag profile of
breadth m. Then HLF produces an optimal M-schedule for G. .

Proof. Assume to the contrary that the theorem does not hold, and let G be an
inforest with a minimal number of tasks, such that HLF is not optimal (for some
nondecreasing zigzag profile of breadth m). If L(G)# &, then H(G) contains less
tasks than G. Thus, HLF is optimal for H(G), and by Lemma 4. 2 it is also optimal ~§
for G. This proves that the minimality of G requlres that L(G) =, and that G contams ’
at most m —1 components.

Let M be any nondecreasing zxgzag profile of breadth m and let A be the length _
of an optimal schedule for G and M. Assume that M has length A. Notice that J
m,=Zm-—1, i.e., all tasks of G of height zero fit into the last slot of M. The minimality
of G implies that HLF is optimal for G, and M. But every HLF-schedule for G and
M can be obtained from an HLF-schedule for G, and M by scheduling all tasks of
height zero in the last slot of M (which was empty) and making the resulting schedule
greedy. The HLF-schedules for G and M are of length A and therefore optimal. ThlS
is a contradiction. 0O

Theorems 5.1 and 5.2 can be further 1mproved using Lemma 4.2. Lemma 4.2 proves
that it is enough to require that only H(G) will be an outforest (resp. inforest) for
Theorem 5.1 (resp. Theorem 5.2) to hold. '

The following examples show that Theorems 5.1 and 5.2 are tight. Table 52
presents an HLF-schedule for the inforest G; of Fig. 5.1 that fits the profile M,=
(3,3,1,1,1) but is not optimal. Nétice that M, is not a nondecreasing zigzag profile.
Table 5.3 presents a nonoptimal HLF-schedule for the outforest G, of Fig. 5.2 that
fits the profile M,=(1,2,3,3,3,3,3). Notice that M, is not a nonincreasing zigza8
profile. If one starts with task 3, then it is easy to find an optimal schedule, which is
shorter than the schedule of Table 5.3. 3

S_—
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5
B 7
E(G,)={1.2.3.4,5}
FIG. 5.1 B
Gz‘. 1
W 3
+2
7 Y8 10
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E(G,)=11,3}
Fi1G. 5.2
TABLE 5.2
A HLF-schedule for the graph of G,
of Fig. 5.1 and the profile M = (3,3,1,1, 1).
slot 1 2 3 4 5
P, l1lalel7]8]
P | 215
Ps |3
TABLE 5.3. _
A HLF-schedule for the graph G, of Fig. 5.2 and the profile
M,=(1,2,3,3,3,3,3).
slot 1 2 4 B 6 7
pplal2]ale |9 |i12]15
Pa 3 o) 7 10 | 13
Ps 8 111114
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6. Opposing forests. We say that a graph is an opposing forest graph if all it
components are intrees or outtrees, that is, it is composed of an inforest and an}
outforest. It was shown that HLF is optimal for scheduling an inforest [Hu61] or ap
outforest [Br81] on a straight profile with arbitrary breadth. On the other hand
scheduling an opposing forest on straight profiles with arbitrary breadth is NP-harq
[GJ81], [Ma81], [Wa81].

If the profile is straight and its breadth m is fixed, then scheduling an opposing
forest is polynomial [GJ81], [Wa81], [DW82c]. These algorithms have rather complex
time bounds (m appears in the exponent). We use the results of this section, which
are derived from the Elite theorem, to obtain a linear algorithm for the special case
of straight profiles of breadth three and opposing forests. This improves the O(n log n)
time bound of an algorithm presented in [GJ81] for this case. Our approach also leads
to an O(n log n) algorithm for scheduling an opposing forest on a zigzag profile of
breadth three (either two or three processors in each time slot).

Goyal [Go76] proved that HLF is optimal for series-parallel graphs [LT79] and
straight profiles of breadth two. Since opposing forests are series-parallel graphs, HLF
is also optimal for opposing forests and straight profiles of breadth two. In the case
of scheduling opposing forests we can generalize Goyal’s result to any profile of breadth
two.

THEOREM 6.1. Let G be an opposing forest> and M be a profile of breadth two. Then
HLF produces an optimal M-schedule for G. '

‘Proof. In case of breadth two H(G) contains at most one component. Therefore,
H(G) is either an intree or an outtree. Note that any profile of breadth two is a zigzag
profile. By Theorem 5.1, Theorem 5.2, and Lemma 4.2 we conclude that HLF produces
an optimal schedule for G. O . \

Note that Theorem 6.1 holds also for graphs that are not opposing forests whose
highest component is either an intree or an outtree. It is easy to see that for arbitrary
graphs and zigzag profiles of breadth two the Cofiman-Graham algorithm [CG72]
produces an optimal schedule. This algorithm corresponds to a restricted version of
HLF. For profiles of breadth three choosing tasks according to highest height does -
not necessarily lead to optimal schedules.

For example, HLF does not produce optimal schedules for the graph of Fig. 6.1
and the straight profile of breadth three. Task 8 must be scheduled in an earlier slot
than task 7. But always preferring the outtree tasks does not lead to an optimal schedule
either. We need a criterion that tells us when to prefer outtree tasks over intree tasks.
Such a criterion will be provided by a theorem proven below: If there is an initial
outtree task x of the same height as the whole opposing forest G, then any set of three

highest tasks of G that contains x starts an optimal schedule for G.

Notice that the above criterion does not apply to the graph of Fig. 6.1, since task
8 is not a task of maximum height. In this case, we “flip” the graph. Let G® denote
the graph obtained by reversing all the edges of G. Note that for an opposing forest,
either G or G* contains an outforest task of height h(G).

In the example (Fig. 6.1 and Table 6.1) we can remove the set {12, 17, 18}. Since
we remove this triplet from the reversed graph, we schedule it in the last slot of the
schedule. The remaining subgraph is shown in Fig. 6.2.

Now both the top and the bottom contain an outtree of maximum height. We can
choose either of the sides to continue the algorithm. Assume we choose {9, 15, 16} and

? Actually the theorem holds for any series-parallel graph, This can be proven by a simple induction
on the size of the graph using Lemma 4.2. :

- pu=0
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10%11
u= \\\\..
12 13 14 15 16 17 18
FIG. 6.1 ’
TABLE 6.1
First step.
slot 1 2 3 4 5 J]
P, 12
P, 17
Pg 18
2 3 4 5 6 8
‘X #1011
o LI
13 14 15 18
: FI1G. 6.2
f TABLE 6.2
: Second step.

slot 1 2 3 4 5 8

P, 9 | 12
Pg 15117
Ps L 16 | 18

put them in the next slot from the bottom. We are left with the subgraph of Fig. 6.3.
At this step we have to switch back to the top, because the reversed graph does not
have an outtree of maximum height.

We remove {8, 1, 2} from the graph and insert them in the first slot of the schedule.
We now obtain the graph in Fig. 6.4.

The Elite of this graph is empty and therefore by the Elite theorem we know that
'HLF produces an optimal schedule for the resulting graph. We complete the schedule
- ‘according to HLF filling slots 2, 3 and 4 and obtain Table 6.4.

.=, The above example demonstrates the Flip-Flop algorithm which will be presented
in the next section. A high-level description of the algorithm is given at the beginning

of the next section.

-
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B

2 3 4 5 8

W 1011
0

13 14
FiG. 6.3.
TABLE 6.3
Third step.
slot 1 2 3 4 5 8
P, B8 9 12
Py 1 15 | 17
Py | 2 16 | 18
“:2 .........
3 4 5 8 10 11
7 13’14
- Fi1G. 6.4.
TABLE 6.4
Last step.
stot 1 2 -3 4 ) 6
P B1 316171912
Py | 1 | 4 11011315117
Pg | 2 |5 11114 |16 ] 18]

The following lemma proves that among tasks of the same height, we can always

schedule tasks of an outtree first.
LEMMA 6.1. Let S be an optimal M-schedule for G. Assume that y is an initial task

of an intree component and that x is an initial task of an outtree component, such that
- h(x)Zh(y). If ye(S), and x£(S), then there exists an optimal M-schedule S for G -

that starts with x instead of y, that is,

($):=((S) = {yHU{x}.

Proof. Let m, be a longest path in G that starts with x, and , the longest path o ]
that starts with y. The path =, is not shorter than m,, because h(x)= h(y). The order : 4
of the tasks on these paths is the same order in which they appear in the schedule S.
Let k be the first slot in S at which the total number of tasks along , in slot k and R

in all previous slots, is equal to the corresponding number of tasks along ar,. There¢
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t be such a slot, because S starts with m, and not with 7, and the latter is not
1er than the former. Moreover, no task of , exists in the slot (8w otherwise, k
11d not be the first.
Since the component of x is an euttree, every task in 7, has at most one immediate
decessor which is the previous task along the path 7 Similarly, every task along
_has at most oné immediate successor, which is the next task along Therefore,
~ can exchange the tasks of m, and m, which appear in the first k slots, one by one,
pectively. The new schedule obtained is of the same length as S, and none of the
.cedence constraints represented by G are violated, simply because every task along '
moves upward following its only immediate predecessor, and every one along 7y
yves downward preceding its only immediate successor. Since in the kth slot there
no task of m, we can exchange the member of 7, which is in (S)k with the last
ember of the path m, that is in a slot of lower index than k. Thus, we have obtained
¢ desired optimal schedule that starts with the set {(Sh —-{yhui{x}. O

In the following theorem We use the Elite theorem t0 show that the inforest tasks
‘an be chosen according to height. »
~ THEOREM 6.2. Let O be an outtree and I be an inforest. Let X be the root of O and
!zt M be a zigzag profile of breadth three. Then i) or ii) holds.

f i) ForanysetT of m, — 1 highest initial tasks of I there exists an optimal M-schedule
or OU I starting with T, U {x}. '

ii) For any set T, of m, highest initial tasks of I there exists an optimal M-schedule
for OU I starting with T,.

Proof. If H (OUI) is an outtree (resp. inforest), then by Theorem 5.1 (resp.
Theorem 5.2) HLF is optimal for H(OUI) and M. Furthermore, Lemma 4.2 implies
that HLF is optimal for the whole graph OU I and M, and the theorem holds.

Assume that OU I is 2 counterexample with the fewest number of vertices. By
the above remarks we know that H(OUI) consists of the outtree O and an intree
which we call N. Theorem 4.1 guarantees that if i) or ii) holds for H(OUT) and M
then it also holds for O UTand M. Thus OUI is not a minimal counterexample unless
L(OUI)=@,i.e.I=N. ' ‘

Let y be the task of N of height zero, and let S be any optimal schedule for
OU N and M. Assume y appears in slot k of S and let G' be the subgraph of OUN
induced by the tasks which are in the first k-1 slots of S. Observe that G' contains
less tasks than O U N. Thus i) or ii) must hold for G' and M. Since hg(x)=hn (x)—1,
for any task x of N in G', a set of highest initial tasks from N in G' is a set of highest
initial tasks of N. We conclude that i) or ii) holds for OUN and M, which contradicts
the minimality of OUN. O .

The following theorem, which is a consequence of the previous two theorems,
leads to the Flip-Flop algorithm. Note that for any opposing forest G, either G of G*
contains an outtree task of height h(x). :

TueorEM 6.3. Let G be an opposing forest that contains an outtree of height h(G).
Let M be a zigzag profile of breadth three; let x be the initial task of an outtree with
height h(G); and let A be any set of m, highest initial tasks of G that contains x. Then
there exists an optimal schedule that starts with A. '

Proof. If H(G)isan outforest, then the theorem holds by Theorem 5.1 and Lemma
42. Theorem 4.1 implies that it is sufficient to prove the theorem for the case when
L(G) is empty. Thus G consists of an intree and an outtree and we can apply the
previous theorem. If case i) holds, then we are done. Assume ii) holds and let R be
“any set of m, highest initial tasks of the intree. This starts an optimal schedule for G
and M. Let z be a minimum height task of R. Then A= R-{z}U{x} is an arbitrary
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set of m; highest initial tasks of G which contains the root of the outtree. By Theorem
6.1 this set starts an optimal schedule for G and M. O

7. The Flip-Flop algorithm. We first give a high-level description of the Flip~F10p
algorithm that produces-an optimal schedule for an opposing forest, G, and a zigzag
profile, M, of breadth three. The algorithm has two phases, a Flip-Flop phase and an
HLF phase. In the Flip-Flop phase we deal with the'case when G has an intree and
an outtree above the median. We iteratively remove sets of initial tasks from G or
from the reverse graph GR to fill up slots in the schedule we are constructing. To do
this we apply Theorem 6.3, i.e. we remove from G if there is an outtree in G of height
h(G) and from G® if there is an outtree in G® of height h(G). Notice that one of
the two cases must hold and that we always choose a set of highest initial tasks that
contains the root of the highest outtree. The sets of inital tasks removed from G are
put in the first, second, , time slot, and those removed from G® are put in the
last, second to last, - - -, time slot.

We stop the Flip-Flop phase and enter the HLF phase as soon as the HLF condition
holds (given below). In the HLF phase we schedule the remaining graph according
to highest-level-first. Our ability to stop the Flip-Flop phase assures the linearity of
~ the algorithm, because we do not have to keep track of too many components.

The Flip-Flop algorithm produces two sequences of sets. One consists of the sets
which were removed from the top (from G) and the other consists of the set removed
from the bottom (from GR®). If the two sequences do not overlap, then we get a valid
schedule for G. In the case of a straight profile we run the Flip-Flop algorithm on a
very long straight profile and then just omit the empty slots between the two sequences
to get an optimal schedule. In this case the Flip-Flop algorithm is linear. For zigzag
profiles another factor of log n is required to find a minimum length valid schedule.

- DEFINITION. We say that the HLF-condition holds for the opposing forest G if
there are either only outtree components or only intree components above the median.

Lemma 7.1. If the HLF-condition holds for an opposing forest G, then HLF produces
an optimal schedule for G and any zigzag profile of breadth three.

Proof. Follows from Lemma 4.2, Theorem 5.1 and Theorem 5.2. 0O

The only remaining case in which the HLF-condition does not hold is when the
opposing forest has exactly two components above the median: an outtree, and an
intree with more than one initial task. Note that an intree that contains only one initial
task is a chain of tasks and a chain is also an outtree.

We are now ready to present the Flip-Flop algorithm. The variables i, and ipo
will point to the next empty slot in the corresponding end of the profile M. Inmally
they point to the first and last slots of the profile M, respectively. The variable G
represents the opposing forest remaining at the current step of the algorithm. Initially,
G is equal to G, and after each removal of a set of tasks from the graph the variable
G becomes the resulting subgraph.

THE FLip-FLOP ALGORITHM
(*Flip-Flop phase*)
REPEAT

WHILE not HLF? (G) and an outtree component is the highest component | '

of G DO:

BEGIN
Remove the initial task of the highest outtree and any other m; -1 highest
initial tasks from G. Add these tasks as slot i,op to the schedule S. Increase
i,op Dy One.

END
IF not HL
WHILE
of GR I
BEGIN
Remove
initial ta
fbor DY €

END
UNTIL HL{
(*HLF phase*
IF HLF? (6
the HLF str:
If HLF (GR
the HLF str:
(*check for ov
IF ilop < ibot '

THEOREM 7.1.
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Proof. To prot
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show that all sets
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END 4
IF not HLF? (G) THEN
WHILE not HLF? (GR) and an outtree component is the highest component
of GR DO:
BEGIN
Remove the initial task of the highest outtree and any other m;, —1 highest
' initial task from G~ Add these tasks as slot iy, to the schedule S Decrease
iyo DY One.
o END
UNTIL HLF? (G) or HLE? (GR)
(*HLF phase®)
IF HLF? (G) THEN continue to fill the schedule S, updating i, by applying
the HLF strategy to G FL
If HLF (G®) THEN continue to fill the schedule S, updating i, by applying
the HLF strategy to GR FL
(*check for overlapping of the two sequences*)
- IF i,p < iyoe THEN the constructed schedule fits the profile ELSE return failure.

* THEOREM 7.1. The Flip-Flop algorithm produces a schedule for an opposing forest
G and a zigzag profile of breadth three. If there is no feasible schedule it returns failure.
Proof. To prove the correctness of the Flip-Flop algorithm it is enough to prove
that if there exists a feasible schedule, then the algorithm will find one. It suffices to
~ show that all sets of initial tasks that are removed from G (resp. GR) start some
~ optimal schedule for G (resp. GR) and the corresponding profiles. Theorem 6.3 assures

this for the Flip-Flop phase and Lemma 7.1 for the HLF phase. 0O

THEOREM 7.2. The Flip-Flop algorithm can be implemented in time O(n).

Proof. We just sketch how to do this. A more detailed description is given in
[DW2b]. First we outline that with some simple data structures an inforest or an
outforest (and therefore an opposing forest) can be scheduled in time O(n). We keep

. the imtlal tasks of the forest in an array of lists. The ith list contains all initial tasks

. of level i To facilitate the removal of up to three highest initial tasks we remember

~ the highest three levels that contain initial tasks. After each removal of an initial set
. Weupdate the array of lists and redetermine the highest three levels. We conclude that

¢ HLF is linear for any kind of forest. In our algorithm we sometimes remove initial
i tasks from the reversed graph according to HLF. This can be handled by keeping dual
data structures for G®. So far we reasoned that the HLF phase is linear.

In the Flip- Flop phase we remove from G as well as from G®. Thus the heights
of the tasks in G and G* might change and we need some more insights in the
algorithm to assure linearity. Observe that if the HLF condition does not hold then
there are at least three tasks in the Elite. Thus during the entire Flip-Flop phase we
~ only remove tasks from the highest two components of G which must be an intree
and an outtree. As soon as the outtree splits into several outtrees then at most one of
them will remain above the median and then this outtree will be a highest one.
Components that drop below the median do not need to be considered any more
durmg the Flip-Flop phase.

e Itis easy to keep track of the hlghest outtree vertex in H (G) and H (GR) But
we also need to remove sets of highest initial tasks from the 1ntree of H (G) and
(GR ), even though the heights of the tasks of the intree in H (6) and H(GR) are
anging during the Flip-Flop algorithm. If we remove the highest outtree vertex of
H(G) (resp. H(GR)), then the heights of all intree tasks in H(GR) (resp. H(G)) drop
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by one. Thus their relative heights in H (é) and H (éR) remain the same and we do
not need to update the heights. This completes the sketch of the linear
implimentation. 0

In the following theorems we show how we can use the Flip-Flop algonthm for
finding optimal schedules.

THEOREM 7.3. The Flip-Flop algorithm implies a linear algorithm to find an optimal
schedule for an opposing forest and a straight profile of breadth three.

Proof. We choose the initial profile to be of length n and run the Flip-Flop
algorithm. The resulting schedule might contain some empty slots in the middle, that
is, after the algorithm terminates i, <ip,. By removing the empty slots we get an
optimal schedule. O

The proof of Theorem 7.2 does not hold for general zigzag profile, because the
difference in the slots size prevents us from just squeezing the schedule to obtain an
optimal one.

THEOREM 7.4. The Flip-Flop algorithm implies on O(n log n) algorithm to find an
optimal schedule for an opposing forest and a zigzag profile of breadth three.

Proof. We run the Flip-Flop algorithm for difterent schedule lengths. The legiti-
mate lengths are between n/3 and n; therefore by binary search we can find the shortest
schedule that fits the profile in time O(nlogn). O

Observe that in Flip-Flop phase only tasks of E(G) and E (GR) respectively, are

removed. Therefore, the algorithm can be easily extended to work for every graph G.

for which H(G) is an opposing forest. The basic reason is that tasks that are under
the median will not “pop up” to be above the median, if we remove tasks according
to height from L(G) and L(GR), respectively(see properties M7 and M8 of the median).
The correctness proof for this extended algorithm remains the same, using Lemma 4.2.
For the sake of simplicity we restrict ourselves to the case where the whole graph is
an opposing forest. The time complexity for running the Flip-Flop algorithm on a
graph G for which H(G) and H(GR) are opposing forests will be O(n+e), where e
is the number of edges in G. Note that in opposing forests e is O(n).
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