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Abstract

In this paper, we examine on-line learning problems in which the target concept is allowed

to change over time. In each trial a master algorithm receives predictions from a large
set of n experts. Its goal is to predict almost as well as the best sequence of such experts
chosen off-line by partitioning the training sequence into k + 1 sections and then choosing
the best expert for each section. We build on methods developed by Herbster and Warmuth
and consider an open problem posed by Freund where the experts in the best partition are
from a small pool of size m. Since k > m, the best expert shifts back and forth between
the experts of the small pool. We propose algorithms that solve this open problem by
mixing the past posteriors maintained by the master algorithm. We relate the number of
bits needed for encoding the best partition to the loss bounds of the algorithms. Instead
of paying logn for choosing the best expert in each section we first pay log (::L) bits in the
bounds for identifying the pool of m experts and then logm bits per new section. In the
bounds we also pay twice for encoding the boundaries of the sections.

Keywords: On-line learning, loss bounds, shifting experts, share updates.

1. Introduction

We consider the following standard on-line learning model in which a master algorithm has
to combine the predictions from a set of experts (see e.g. Littlestone and Warmuth, 1994,
Vovk, 1990, Cesa-Bianchi et al., 1997, Kivinen and Warmuth, 1999). Learning proceeds in
trials. In each trial the master receives the predictions from n experts and uses them to
form its own prediction. At the end of the trial both the master and the experts receive
the true outcome and incur a loss measuring the discrepancy between their predictions and
the outcome. The master maintains a weight for each of its experts. The weight of an
expert is an estimate of the “quality” of this expert’s predictions and the master forms its
prediction based on a weighted combination of the experts’ predictions. The master updates
the experts’ weights at the end of each trial based on the losses of the experts and master.
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The goal is to design weight updates that guarantee that the loss of the master is never
much larger than the loss of the best expert or the best convex combination of the losses of
the experts. So here the best expert or convex combination serves as a comparator.

A more challenging goal is to learn well when the comparator changes over time. So now
the sequence of trials is partitioned into sections. In each section the loss of the algorithm
is compared to the loss of a particular expert and this expert changes at the beginning of
a new section. The goal of the master now is to do almost as well as the best partition.
Bounds of this type were first investigated by Littlestone and Warmuth (1994) and then
studied in more detail by Herbster and Warmuth (1998) and Vovk (1999). Other work on
learning in relation to a shifting comparator but not in the expert setting was done by Auer
and Warmuth (1998), Herbster and Warmuth (2001) and Singer (1998).

In this paper we want to model situations where the comparators are from a small
pool of m convex combinations of the n experts each represented by a probability vector
a5, (1 < j < m). In the initial segment a convex combination %; might be the best
comparator. Then at some point there is a shift and @o does well. In a third section, 4
might again be best and so forth. The pool size is small (m < n) and the best comparator
switches back and forth between the few convex combinations in the pool (m < k, where k
is the number of shifts). Of course, the convex combinations of the pool are not known to
the master algorithm.

This type of setting was popularized by an open problem posed by Freund (2000). In
his version of the problem he focused on the special case where the pool consists of single
experts (i.e. the convex combinations in the pool are unit vectors). Thus the goal is to
develop bounds for the case when the comparator shifts back and forth within a pool of m
out a much larger set of n experts.

Herbster and Warmuth (1998) developed bounds where the additional loss of the algo-
rithm over the loss of the best comparator partition is proportional to the number of bits
needed to encode the partition. Following this approach Freund suggests the following ad-
ditional loss bound for his open problem: log (:@) ~ mlog = bits for choosing the pool of m
experts, log m bits per segment for choosing an expert from the pool, and log (lel) ~ klog %
bits for specifying the k boundaries of the segments (where 7 is the total number of trials).

In this paper we solve Freund’s open problem. Our methods build on those developed
by Herbster and Warmuth (1998). There are two types of updates: a Loss Update followed
by a Mizing Update. The Loss Update is the standard update used for the expert setting
(see e.g. Littlestone and Warmuth, 1994, Vovk, 1990, Haussler et al., 1998, Kivinen and
Warmuth, 1999) in which the weights of the experts decay exponentially with the loss. In
the case of the log loss this becomes Bayes rule for computing the posterior weights for the
experts. In the new Mixing Update the weight vector in the next trial becomes a mixture of
all the past posteriors where the current posterior always has the largest mixture coefficient.

The key insight of our paper is to design the mixture coefficients for the past posteriors.
In our main scheme the coefficient for the current posterior is 1 — « for some small a € [0, 1]
and the coefficient for the posterior d trials in the past is proportional to a/d. Curiously
enough this scheme solves Freund’s open problem: When the comparators are single experts
then the additional loss of our algorithms over the loss of the best comparator partition
is order of the number of bits needed to encode the partition. For this scheme all past
posteriors need to be stored requiring time and space O(nt) at trial ¢. However, we show
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how this mixing scheme can be approximated in time and space O(nlnt). An alternate
simpler scheme has slightly weaker bounds: The coefficients of all past posteriors (there
are t of them at trial ¢) are a%. Now only the average of the past posteriors needs to be
maintained requiring time and space O(n).

We begin by reviewing some preliminaries about the expert setting and then give our
main algorithm in Section 3. This algorithm contains the main schemes for choosing the
mixture coefficients. In Section 4 we prove bounds for the various mixing schemes. In
particular, we discuss the optimality of the bounds in relation to the number of bits needed
to encode the best partition. We then discuss alternatives to the Mixing Update in Section
5 and experimentally compare the algorithms in Section 6. We conclude with a number of

open problems.

2. Preliminaries

Let T denote the number of trials and n the number of experts. We will refer to the experts
by their index i € {1,...,n}. At trial ¢ = 1,..., T, the master receives a vector x; of n
predictions, where x;; is the prediction of the i-th expert. The master then must produce
a prediction ¢; and, following that, receives the true outcome y; for trial t. We assume that
Ty, U, ye € [0, 1]

A loss function L : [0, 1] x [0, 1] — [0, 00] is used to measure the discrepancy between the
true outcome and the predictions. Expert ¢ incurs loss L;; = L(y:, ¢;) at trial ¢ and the
master algorithm A incurs loss Ly 4 = L(y,3;). For the cumulative loss over a sequence,
we will use the shorthand notation Ly 7 4 = Zg;l Ly 4.

The weight vector maintained by the algorithm at trial ¢ is denoted by v;. Its elements
are non-negative and sum to one, i.e. vy is in the n-dimensional probability simplex denoted
by Pn.

Based on the current weight vector v;, and the experts predictions x;, the master
algorithm uses a prediction function Pred : P, x [0,1]" — [0, 1] to compute its prediction
for trial t: ¢, = Pred(v;, z;). In the simplest case the prediction function is an average
of the experts predictions Pred(v, z) = v - z (see Kivinen and Warmuth, 1999). Refined
prediction functions can be defined depending on the loss function used (see Vovk 1990).
The loss and prediction functions are characterized by the following definition.

Definition 1 (Haussler et al., 1998, Vouvk, 1998) Let c¢,n > 0. A loss function L and
prediction function Pred are (c,n)-realizable if, for any weight vector v € Py, prediction
vector x and outcome y,

—_
~—

L(y,pred(v,z)) < —cln Y | vie 100 (
=1

For example, with the prediction function Pred(v,z) = v - x the quadratic loss Lsq(y,9) =
(1-

(y — §)? satisfies! (1) with (c,n) = (2,4) and the entropic loss Lent(y, ) = yln% +

Y) lnﬁ satisfies (1) with (¢,n) = (1,1).

1. A slightly more involved prediction function shows that the quadratic loss is (%

5, 2)-realizable (see Vovk,
1990).

365



BoUSQUET AND WARMUTH

In the remainder we will assume the loss and prediction functions that we use are
(¢, 1/c)-realizable so that cn = 1. The two loss functions given above satisfy this criterion.
This does not include the case of the absolute loss. However, the results here can essentially
be extended to this loss as was done by Herbster and Warmuth (1998).

In the bounds given in this paper we will use the relative entropy as the measure of
progress. For any u,v € Py,

A(u,v) = E uilnﬂ >0 .
;
i=1

We adopt the usual convention that 0In 0 = 0. For two vectors w and v, we write u > v, if
the “>” relationship holds componentwise. We use 0 to denote the all-zero vector.
The proofs in this paper rely on the following simple inequalities for the relative entropy:

Lemma 2 For u,v,w € P, and v,w > 0,

Au,v) < A(u,w) +1n (i uz%>

i=1 v

If v > fw, for some B > 0, then

Au,v) < A(u,w) + ln% .

Proof The first inequality follows from the concavity of the In function and Jensen’s
inequality:

n w; n w;
A(u,v) — Alu,w) = ;uz lnv—i <In (; uzv—>

1

For the second inequality we use the assumption that v > Gw:

n n
>uth< Y ut 2

U= > Us = = .
— Ty T~ pPw; P
=1 =1

The first inequality is tighter than the second. However, for the sake of simplicity of the
presentation we only use the second inequality throughout the paper. Chosing u = w gives

us
= w; 1
(w,v) n<i:§1wvi> nﬁ

Corollary 3 Let u € P, and v be a mizture of vectors wy € P, with wy > 0. That is,
v = Zzzl Bywq, where (Br,...,0) € Py and > 0. Then for any 1 < g <t,

Au,v) < A(u,wy) + lni :
Baq
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By choosing u = w, (for 1 < ¢ < t), we have

A(wg,v) < lni .
q

So the mixture vector v is "close” to all w,. Later in the paper the w, will be posteriors
from past trials. The new posterior at trial ¢t will be a mixture of the previous posteriors and
the corollary guarantees that the new posterior is close to all previous posteriors provided
that the mixture coefficients 3, are not too small.

3. The Algorithms

Learning proceeds in trials. At the beginning of each trial ¢ (see Figure 1) the master
algorithm receives the prediction vector x; from the experts and forms its own prediction 7.
It then receives the correct outcome y; and performs two weight updates. The first update
is the standard Loss Update which is the basis for all the work in the expert framework
(see Littlestone and Warmuth, 1994, and Vovk, 1990). This update, which produces an
intermediate weight vector v}*, may be seen as a generalization of Bayes rule for updating
a posterior. Indeed when y; € {0, 1}, the learning rate 1 is one and the loss is the log loss
then this update becomes Bayes rule (see Appendix A for a detailed discussion).

The Loss Update allows us to prove bounds on the loss of the master algorithm in terms
of the loss of the best expert (see Littlestone and Warmuth, 1994, and Vovk, 1990) or the
best convex combination @ € P, of the losses of the experts (see Kivinen and Warmuth,
1999). However in this paper the convex combination used as a comparator is allowed to
change with the trial ¢. Let u; be the convex combination used in trial £. The beliefs of
the algorithm about the comparator sequence are modeled with a probability distribution
Bis1(.). At the end of each trial ¢ the master algorithm might need to “pick up” the com-
putation from some previous trial. For 0 < ¢ <, let 8;11(q) be the coefficient /probability
given to weight vector vg" of trial ¢. Intuitively, if ¢ is the last trial in which the compara-
tor usqq is used then F;41(q) should be high. In particular, §;41(¢) should be high if the
comparison vector remains unchanged, i.e. u; = usrq. Also if the comparison vector w1
has never appeared before then the coefficient (;41(0) should be high because a section
needs to be started with the initial weight v’. Thus the second update (called the Mizing
Update) “mixes” the previous weight vectors v}*. In the case of log loss the update mixes
the current and the previous posteriors. However note that all posteriors are influenced by
mixing that occurred in previous trials.

The probabilities (,+1(q) are specified by the specific mixing scheme to be used (see
Table 1). The simplest case occurs when fi41(¢) = 1 and the remaining coefficients are
zero. Thus vy41 simply becomes v}". Following Herbster and Warmuth (1998) we call this
the Static Experts case. This choice is the setup suitable when the comparator is the loss of
a fixed expert (see e.g. Littlestone and Warmuth, 1994, and Vovk, 1990) or a fixed convex
combination of the losses of the experts (see Kivinen and Warmuth, 1999).

Even in the case when shifting occurs the largest coefficient is naturally 311 (t) signifying
that the computation is most likely going to continue from the weight vector at the current
trial t. We call any update where 8,41(t) = 1 — o for some fixed small « by the name Fized-
Share Update. In contrast to the Static Update when vy simply becomes the current
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Parameters: 0 <n,cand 0 < a <1
Initialization: Initialize the weight vector to v; = %1 and denote vg* = %1
FOR t=1TO T DO

e Prediction: After receiving the vector of experts’ predictions x¢, predict with

Ut = pred(vt7 th) .

e Loss Update: After receiving the outcome y;, compute for 1 < i < n,

—nL¢
vt,le n il
Vi = =m — where Ly; = L(yt, x1;) -
Zj:l Vg,j€ ’

e Mixing Update: Choose non-negative mixture coefficients f;41(q) (¢ =0,...,t)
such that ZZZO Bi+1(q) = 1 and compute

¢
Vg1 = Zﬁt+1(Q)U¢T .
q=0

Figure 1: The Mixing Algorithm

Table 1: The Mixing Schemes

Name Coefficients
Static Experts Be+1(t) =1 and Biy1(q) =0 for 0 < g <t
Fixed-Share Update Biy1(t) =1—a and ZZ;E Biy1(q) = «

e To Start Vector Bi+1(0) =

e To Past

e Uniform Past Bisi(g) =atfor0<qg<t
e Decaying Past  [i+1(q) = « (t—_lq)fZLt for 0 < g < t,
with Z, = S207L —L_ and v2>0

=0 (t—q)7
Bt+1(a) Bt+1(q) Bt41(q)
Ifmmmmmm———mmmmm—————— e T Ifmmmmmmm e
1-a 1- 1-a
. a/t = ﬁ
A I L S t-Lt o 9 0 0! 1! 2! — !.,.! == !:71 t o 4d R L B L t-L ¢t 9
F'S to Start Vector FS to Uniform Past FS to Decaying Past

posterior v{"*, each expert first “shares” a fraction of a of its weight v}"; and the total shared
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weight « is then distributed among the earlier posteriors (i.e. Zfl;% Bir1(q) = 1= Bipa(t) =
Q).

In the simplest case all of the shared weight a goes to the uniform weight vector %1 =
v’ leading to essentially the Fixed-Share Algorithm analyzed by Herbster and Warmuth
(1998). The main contribution of this paper is to show that other choices of distributing
the shared weight to the past posteriors give useful bounds. A simple choice is the average
of the past weight vectors (Uniform Past), i.e. fi11(q) = « %, for 0 < ¢ < t. Instead of
the average a decaying sequence of coefficients leads to better bounds. The more recent

weight vectors receive higher coefficients. In the case of the Decaying Past mixing scheme,

Biy1(q) = a Wu for v > 0.

4. Analysis of the Algorithms

In this paper we stress the bounds where the loss of the algorithm is compared to some
convex combination of the losses of the experts (see e.g. Kivinen and Warmuth, 1999)
rather than the loss of a single expert. Let 51(0) = 1, A(.,.) be the relative entropy and L,
be the vector of the losses L;; of the experts at trial t.

Lemma 4 For any trial t, any 0 < q <t —1 and any comparison vector uy € Py,

Lia

IN

L - up 4+ ¢ Aug, vi) — ¢ A(ug, v)")

m m 1
< Li-ug+cAug, vy') — e Aug, v") +cln )

Proof The first inequality follows from rewriting the r.h.s. of (1) using the assumption
that cn = 1:

n n "
—cln Z vtﬂ'e*ﬂLt,i = E Upi Ltﬂ' +cln efnLt,i —¢ln 2 : Ut,jeinLt’j
=1 i=1 =
n n m
Vg
= ut,iLt,i +c Ut,i In —
i - UVt
=1 i=1 )

= L; up+ cA(ug, v) — c Aug, v7)

The second inequality follows from Corollary 3. |

4.1 Comparison to a Fixed Convex Combination

Here we consider the case when the comparison vector u; = @ remains unchanged. We will
thus use the Static Experts mixing scheme, i.e. f;41(t) =1 and Bi41(q) =0 for 0 < g < ¢.
This is exactly the Static Experts Algorithm since v} becomes the weight vector used in
the next trial, i.e. vi41 = v}". By summing Lemma 4 over all trials we get the following
bound (see e.g. Kivinen and Warmuth, 1999).
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Lemma 5 For the Mizing Algorithm with the Static Expert mizing scheme (i.e. no mizing)
and any u € Py,

T
Lyra < Z Ly -+ cA(t,v1) — cA(a,vr) -
t=1
Proof We apply Lemma 4 (first inequality) to each trial ¢ = 1,...,7T and use the fact that

vy = v)" ;. The sum of divergences telescopes so that only the first and last terms remain.
|

Note that the r.h.s. is the same for all ©. To obtain upper bounds we often choose a
particular @ and drop the —A(@,v’') term which is always negative. The start vector is
always uniform, i.e. v = %1. If the best expert has loss L* and @ is the unit probability
vector for this expert then A(@,11) = Inn and the above bound is at most L* + clnn.
However if k experts have loss L* then by choosing @ uniform over these experts (and
zero on the remaining experts) the bound becomes L* + cIn £. This improvement was first
pointed out by Littlestone and Warmuth (1994).

4.2 Comparison to a Sequence with k Shifts

Now, we consider the situation where the comparison vector w; of trial ¢ is allowed to
change/shift from trial to trial. A sequence of comparison vectors ui,...,ur € P, has k
shifts if there is a subsequence of k trials iy, ..., t; where uy; + ug;—1 and ug—1 = uy for all
other trials ¢ > 1. We define tg = 1 and tx41 =7 + 1. We now apply Lemma 4 to the case
when all of the lost weight o goes to the original posterior %1. This essentially becomes
the Fixed-Share Algorithm of Herbster and Warmuth (1998).

Lemma 6 For the Mizing Algorithm A with the Fized-Share to the Start Vector mizing
scheme and any sequence of T comparison vectors w; with k shifts,

T k
1
Ll..T,A < Z Lt T UL+ CZ (A(utju_l) - A(utj7vz?+11)>
t=1 j=0 "
1 1
+ckln—+¢(T —k—1)In
« 11—«

Proof We apply Lemma 4 (second inequality) for each trial. Whenever u; = u;—; then
weuse q=t—1and fi(t —1) =1—a, ie.

1
Lgi <L u+cA(ug, vit ) —cAlug, vi")+cln 7
-«

For the first trial we use ¢ =0, 31(0) = 1, and vy’ = %1:
1
Loy < Li-ur+cA(ur,—1) — cA(ug, vf") .
n

For all other beginnings of sections, i.e. the trials t = ¢; (1 < j < k) weuse ¢ = 0, 3;;(0) = a,
and vy' = %1:

Lay < Ly

J

1 1
" Uty + CA(utj,El) — CA(utj,Ug‘) —}—clna .
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Now we sum over all trials. The entropy terms within the sections telescope and only for
the beginning and the end of each section a positive and a negative entropy term remains,
respectively. The beginnings of the k sections each incur an additional term of ¢In é Also
T —k +1 times uy = us—1 and an additional term of cIn ﬁ is incurred. The initial trial
(t = 1) has no additional term. [ |

If we restrict ourselves to the case when the comparison vectors are focused on single
experts then we essentially obtain the basic bound of Herbster and Warmuth (1998) for the
Fixed Share to the Start Vector mixing scheme.

4.3 Comparison to a Sequence with £ Shifts and a Pool of Size m

As in the previous section we let ¢1,...,t; be the subsequence of indices in the sequence of
comparators uq, ..., ur where shifting occurs (also tg = 1, tx11 = T + 1 and up4q = ur).
Let 4y, ..., ay, be the pool of m distinct convex combinations in {wg,,...,us }. At trial

to = 1 the first convex combination from the pool is selected. At the remaining starting
points wg; (1 < j < k) of sections either a new convex combination is selected from the pool
(m — 1 times) or the convex combination u;; has appeared before in {uy,,...,us_;}. In
the latter case (kK —m + 1 times) the convex combination shifts back to the end of the last
section where this convex combination from the pool was the comparator. We assume that
m < k and thus most of the shifts (k + 1 — m of them) are shift backs. Curiously enough
the entropy terms for all trials belonging to the same convex combination telescope.

Theorem 7 For the Mixing Algorithm A and for any sequence of T' comparison vectors u;
with k shifts from a pool {1, ..., Um} of m convexr combinations, we have (recall $1(0) =1)

T m T
o1 o 1
Ly ra < g Li-u+c E (A(Uj,gl) —A(uj,vej)) +c g In ——
t=1

t=1 j=1 ﬁt(Qt—l) ’

where €; is the last trial such that u; = u; and q; is the last of the trials ¢ < t such that
U1 = Uq (we let gp = 0 when no such trial exists).

Proof We apply Lemma 4 to all trials using ¢ = q;—1:

Lia < Ly up +cAug, vy ) — cA(ug, v") + cln;

Bi(qi-1)

We claim that summing the above over all trials proves the theorem. First note that the
comparator u; remains constant within each section. So as before the entropy terms within
each section telescope and only for the beginning and end of each section a positive and
a negative entropy term remains, respectively. Furthermore, the ending and beginning
terms belonging to successive sections of the same convex combination from the pool also
telescope. So for each element of the pool only two entropy terms survive: one for the
beginning of the first section where it appears and one for the end of its last section. More
precisely, the beginning of the first section of convex combination 4; contributes A(;, %1)
because then g1 = 0 by definition. Also the last trial ¢; of @; contributes —A(;, UZ‘). [
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The challenge is to design the mixing coefficients (;41(¢q) so that the last sum in the above
theorem is minimized. We give some reasonable choices below and discuss time and space
trade offs.

Bound for the Fixed Share to Uniform Past Mixing Scheme. Consider a mixing
scheme that equally penalizes all vectors in the past: (;4+1(¢) = « % (g=0.t—1).

Corollary 8 For the Mizing Algorithm A with the Fized Share to Uniform Past mixing
scheme and for any sequence of T comparison vectors uy with k shifts from a pool of m
convexr combinations, we have

1
+ckIn(T —1) .
a

T
1
Lipa < ZLt-ut+cm1nn+cklnE+C(T—k—1)1111_

t=1

Proof We use the bound of Theorem 7. Clearly, each of the m differences of divergences
can be bounded as follows:

A, %1) — Alay, o) < A4, %1) <Inn .

So to complete the proof we still need to show that the last term in the inequality of
Theorem 7 is bounded by the last three terms in the inequality of the corollary.

There are T'— k — 1 trials such that uy; = uy—1. For all these trials 5;(q;—1) = Bi(t —1) =
1 — o contributing a total cost of ¢(T —k — 1) In 7-—. In all the remaining trials a section is
starting. For the first trial £1(0) = 1 and no cost is incurred. If ¢ is the index of one of the
k remaining trials, which are at the start of a section, then £;(¢;—1) = « ﬁ Thus these
trials contribute at most cklnd + ckIn(T —1). [ |

Bound for the Fixed Share to Decaying Past Mixing Scheme. We now show
that an improvement of the above corollary is possible by choosing £;11(q) = aW for

Zy
0<q<t—1,with Z, = Y!"§ (t}q)v.

Corollary 9 For the Mixing Algorithm A with the Fized Share to Decaying Past mixing
scheme with v = 1 and for any sequence of T comparison vectors us with k shifts from a
pool of m convex combinations, we have

T
1 1
Lira < ;Lt cug+emlun + ckln =+ (T — k= 1) In——
R 1):” —D 4 cklnin(er) .
Proof The proof follows the proof of Corollary 8 and is given in Appendix B. |

In Appendix D we give slightly improved bounds based on a better tuning of v. We
also allow the coefficient 5;41(0) to be equal to some constant § (i.e. not decreasing with
t). These improved tunings led to slightly better performance in practice and were used for
the experiments in Section 6.
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4.4 Relating the Bounds to the Number of Bits

In this section we assume the comparison vectors u; are unit vectors. The number of bits
(measured with respect to cln instead of log) for encoding a partition with & shifts from a
pool of size m is the following:

T-1 T

cln ") +cln +clnm+ck:1n(m—1)%cmln£+ck¢1n—+ck¢1nm. (2)
m k m k

The first term is for selecting the m experts of the pool, the second term for encoding the

boundaries of the k shifts and the last term for naming members of the pool belonging to

the k + 1 sections.

Now consider the following “direct” algorithm proposed by Freund. Run the Mixing
Algorithm with the Fixed Share to Start Vector mixing scheme (i.e. the Fixed Share Al-
gorithm of Herbster and Warmuth, 1998) on every pool/subset of m out of the n experts.
Each run becomes an expert that feeds into the Mixing Algorithm with the Static Experts
mixing scheme. If u; is the comparator sequence of the best partition with k£ shifts from a
pool of m experts then the loss of this algorithm is at most Z?:l Ly - uy plus the number of
bits (2). However this algorithm requires (:@)m weights which is too large for most practical
applications.

In contrast, our algorithms are efficient and the bounds are still close to optimal. For
example, if a = % then the bound of the Mixing Algorithm with the Fixed Share to
Decaying Past (7 = 1) mixing scheme (see Corollary 9) is the loss of the best partition plus
approximately

T T
cmlnn + ck:lnz + ck:lnTm +cklnln(eT).

If we omit the last term, then this is at most twice the number of bits (2) and thus we solved
Freund’s open problem. Also note that the above bound is essentially ckIn % +cmlnm
larger than the number of bits. In the dominating first term we are paying a second time
for encoding the boundaries. The same bound with the Uniform Past mixing scheme is not
a constant times larger than the number of bits. Thus it seems that the mixing coefficients
need to decay towards the past to obtain the best bounds.

The better Decaying Past scheme requires us to store all previous posteriors, i.e. nt
weights at trial ¢. However in Appendix C we describe a way to approximate this scheme
with a storage requirement of only O(nlogt) weights, without significantly increasing the
loss bounds. (Whenever logt < (:@), then these methods are preferable over the direct
algorithm.) The Uniform Past scheme, in contrast, only needs to store the current and the
average of the past posterior (i.e. 2n weights).

5. Additional Observations

In this section, we will discuss some extensions and generalizations of the mixing schemes
proposed above.
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5.1 Mixing Several Mixing Schemes

Given two mixing schemes 3!(.) and 3%(.) we can define a new scheme

Bir1(q) = 6 Bia(q) + (1 —6) BEi(a),

for 0 < ¢ < tand é € (0,1). In view of Lemma 2 it should be easy to see that the
bound obtainable (via Theorem 7) for the new scheme 3 (.) is at most cIn % plus the bound
obtainable via scheme $!(.) and at most cln 25 plus the bound obtainable via scheme
$%(.). So if we are not quite sure which scheme to use, we can mix them and essentially be
as good as the best of both schemes.

5.2 Generalized Mixing Schemes

Notice that the bounds proven in this paper rely on the following simple property of the
Mixing Update:
Vg=0,...,t: vi1 2> Br(gvyg’ - (3)
This property is used in Lemma 2 and Corollary 3 and is the basis for our main result
(Theorem 7).
The following update (called Maz Mizing Update) also has this property and thus all
bounds proven in the paper immediately hold for this update as well:

1 ¢
Vit1 = Z T;ljg( (ﬁt+1(Q)U¢T) )

where Z; is the normalization and the max is component-wise. Since max(a, b) < a + b for
positive a and b one can show that Z; < 1 and thus (3) is satisfied.

More generally, we can replace the maximum by other functions. For example, for any
p > 1, we can use f(a,b) = (a? 4 bP)'/P. Since we have a? + b? < (a + b)? for any a,b > 0,
we can see the condition (3) will still hold.

Another possible update is to minimize the relative entropy subject to the constraint
defined by (3), i.e.

: m
vy = arg min A(v,v
+ g’UGCthn ( ’ t ) ’

where Cy is the set of vectors satisfying (3). We call this the Projection Mizing Update. Such
updates have been used by Herbster and Warmuth (2001) to obtain bounds for shifting in
a regression setting.

Notice for all generalized mixing schemes described above we can still use the technique
sketched in the Appendix C for reducing the number of weights at trial ¢ from O(nt) to
O(nlogt).

5.3 Variable Share and Lazy Mixing Updates

Inspired by the Variable Share Algorithm of Herbster and Warmuth (1998) we define the
following Variable Share Mizing Update. As we shall see in the next section this algorithm
is better in the experiments than the Mixing Update when the same mixing scheme is used.

t—1

Vitl,i = ﬁt+1(t)Lt’i’U;Z + Ft Z ﬁt+1(q)vg§ )
q=0
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where the losses L;; must be in [0,1] and F} is a factor that assures that the v, ,; sum to
one. Note that the standard Mixing Update can be written as

t—1
Vi1, = B (t)vy + Z Br+1(q)vg; -

q=0
Thus when all L;; are one then F; = 1 and both updates agree. Also when all L;; are zero
then F; = 0 and v¢11 = vy* = v; which is the Static Experts Update. This shows that
the new update interpolates between the Mixing Update and the Static Experts Update.
In some sense this update uses a small loss of the experts as an indicator that no shift is
occurring.

Another such indicator is the loss of the master algorithm itself. Indeed, when the
master performs well, it is likely that no shift is occurring and there is no need to mix the
posteriors. This idea leads to the Lazy Mixing Update which works as follows. We use a
variable By to accumulate the loss of the master algorithm: we initialize B; to 0 and update
with Byy1 = By + Ly 4. Only if B;yq > 1 then we perform the Mixing Update and reset
Bi+1 to 0.

5.4 NP-Completeness

We now prove that the off-line algorithm for finding the best partition with experts from
a pool is NP-complete. However we do not know how to use this hardness result to prove
lower bounds on the loss of on-line algorithms.

Theorem 10 The following off-line problem is NP-complete.
Input: A number of trials T, a number of experts n, a number of shifts k, a pool size
m, binary predictions xy; for each expert i and trial t, and binary labels y; for each trial t.
Question: Is there a partition of the T trials with k shifts from a pool of m convex
combinations that has loss zero?

Proof The problem reduces to three-dimensional matching (see Garey and Johnson, 1979,
page 221). We have T' = 3¢ trials. Trials 1,2,...,3q correspond respectively to the ele-
ments w1, wo, ..., Wq, T1,72,...,Tq, 51,52,...,5. Choose the z;; and y; so that each triplet
(wj, %, S¢) corresponds to an expert that only predicts correctly in trials j, k+ ¢ and £+ 2g,
respectively. The number of convex combinations m is ¢ and the number of shifts k is 3¢ —1.

One now can now show that a partition of loss zero corresponds to a matching and vice
versa. |

6. Experiments
In this section we discuss experiments performed on artificial data. The setup is similar to

the one used by Herbster and Warmuth (1998).

6.1 Generating Datasets

The sequence of trials is partitioned beforehand into segments and a good expert is as-
sociated with each segment. We will choose the examples so that the good expert has a
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smaller expected loss than the other experts. The loss of the good partition will serve as a
comparator to the loss of our on-line algorithms. In the notation of the previous sections
the uy are unit-vectors specifying the good expert of trial ¢.

The loss is measured by the square loss. The outcome of each example is 0 or 1 with
probability 1/2 and the predictions of the experts are generated randomly in [0, 1] as speci-
fied below. The prediction of the good expert is chosen uniformly in a small interval around
the outcome. If the outcome is 0, we choose the prediction uniformly in [0,a] and if the
outcome is 1, we choose the predictions uniformly in [1 —a, 1]. In our experiments we chose
a = .15 for the good expert which makes its expected square loss a?/3 = 0.0075. The
predictions of the other experts are chosen the same way but now a = .5 and the expected
loss is 0.083 per trial.

6.2 Algorithms

We choose a prediction function due to Vovk (1998) which has slightly better bounds than
the weighted average prediction discussed in Section 2 (see Kivinen and Warmuth, 1999).
For the square loss Vovk’s prediction function is motivated as follows (see Haussler et al.,
1998). Define Lo(z) = L(0,2) = 22 and L;(z) = L(1,2) = (1 — 2)? for z € [0, 1]. Both these
losses are monotone in [0, 1] so that we can define the inverse functions Ly'(z) = v/z and
LiY(2) =1 — /z. Now we define

V(Uay) = _Clnz f[),ie*n(y*%‘)z .
i=1

Then the prediction is computed as

Ly (4(v,0) + L (3(v, 1))

pred(U, x) = 5

This prediction function together with the square loss is (1/2,2)-realizable, i.e the learning
rate n is 2 and ¢ = 1/2. In contrast, the weighted average prediction is only (2,1/2)-
realizable. In this paper we assumed that c¢p = 1. In this case c is the factor in front of the
additional loss incurred by the algorithm (see for example Theorem 7). Thus the smaller ¢,
the better the bounds.

We consider the various mixing schemes introduced in this paper. The parameters

such as «, § or v are all set to their optimal value, namely o* = =, §* = Z=1 and

T-1 k
¥ =1-In""! % (see Appendix D for details).

6.3 Format of the Results

We present two types of plots. The first type is a total loss plot which depicts the cumulative
loss of various algorithms as a function of the trial number. The best partition is indicated
along the z-axes as follows. We plot vertical lines at each shift in the best partition and
write the index of the best expert at the beginning of each section.

The second type of plot displays the weights of the experts maintained by the master
algorithm where the z-axis is again the trial number. Only the larger weights appear in the
plots. Those weights usually correspond to the experts in the small pool of experts used in

376



TRACKING A SMALL SET OF EXPERTS

1 1
920 Typical Expert / ]

80 FS Start .
FS Decaying Past

70 1

60 I .

%50-

540- /_'_‘/__-
30 /_d/_"/'_—'_
ol 2 ]

P e
10 | — -
° 2 1 l2 l3 1 2

Best Expert

Figure 2: Total losses obtained by the different mixing schemes. The parameters are T =
1400, n = 20000, k = 6, m = 3. The numbers below the x-axis indicate the index
of the best expert in the current segment.

the best partition. We always use a different color for each expert from the pool. We also
depicted in these plots the maximum weight of any experts outside the pool and the weight
of a typical expert outside the pool. Often we use a logarithmic scale of the weights (on the
y-axis) to emphasize small weights.

6.4 Basic Experiment

We use T' = 1400 trials and n = 20000 experts, m = 3 of which constitute the experts in
the pool. W.l.o.g. these are the first three experts. Thus the best partition only uses the
first three unit vectors. The best partition has 7 segments of 200 trials each. We thus have
k = 6 shifts. The sequence of best experts is 1,2,1,2,3,1,2. This means that at trials 1,
t; = 201 and t4 = 1001 the three experts of the pool have small loss for the first time, while
at trials 401, 601, 801 and 1201 we are shifting back to a previously used expert from the
pool. In Figure 2 we plot the total loss of the different algorithms as a function of the trial
number. The top curve is the total loss of a typical expert and the bottom curve is the
total loss of the best partition. The slope always corresponds to the loss per trial.

As expected, the Static Experts Algorithm simply learns the weight of the expert be-
longing to the first section and then “gets stuck” with that expert. It has the optimal rate
of loss (slope of bottom curve) in all later segments in which the first expert is active and
the slope of the top curve in the remaining sections. The total loss curve of the Fixed Share
to Start Vector mixing scheme has a bump at the beginning of each section but is able to
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Figure 3: Weights for the different mixing schemes (top: Static Experts Algorithm, middle:
Fixed Share to Start Vector, bottom: Fixed Share to Decaying Past). The line
marked “1” depicts the log weight of expert 1.
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recover to the optimum slope after each shift. The bumps in its total loss curve are roughly
of equal size. However note that the Fixed Share to Decaying Past mixing scheme is able
to recover faster when the sequence shifts back to a previously active expert from the pool.
Thus in trials 401, 601, 801 and 1201 the bumps in its total loss curve are smaller than the
bumps in the curve for the Fixed Share to Start Vector mixing scheme.

In support to the above explanation, we plotted the weights maintained by the algo-
rithms in Fig. 3. Clearly the Static Experts Algorithm (top plot) is unable to track the
shifts. In the Fixed Share to Start Vector mixing scheme (middle plot) the weight of each
expert is picked up exponentially fast in each segment. Note that the pickup is similar in
each segment. However in the Fixed Share to Decaying Past mixing scheme (bottom plot)
the weights of the experts are picked up faster in sections where we return to an expert that
has already been used in an earlier section.

To focus on the small weights we plot the weights of the Fixed Share to Start Vector and
the Decaying Past mixing schemes on a logarithmic scale (Figure 4). Note that if an expert
of the pool was active then its weight remains at an elevated level above the maximum
weight of all n — 3 experts outside the pool. From the elevated level the weight can be
picked up more quickly when the same expert becomes active again. This corresponds
to the smaller bumps in the total loss curve of the Decaying Past mixing scheme for the
sections when an expert becomes active again (see Figure 2).

For all the experiments we conducted, the Uniform Past mixing scheme essentially has
the same performance as the Decaying Past mixing scheme (plots not shown), although the
bounds we proved for the former scheme are slightly worse than those proven for the latter
scheme. Similar performance was also obtained with the Max Mixing Updates.

6.5 Many Experts Remembered

We next consider an experiment where the master algorithm has to “remember” a larger
number of experts for a longer period of time. We use a pool of size m = 10 and cycle
through these experts three times where each segment has length 200. Each of the 10
experts thus has to be remembered for 2000 trials.

Figure 5 shows the total loss plots. We notice that in the 10 section (the first cycle),
the curve of the Fixed Share to Start Vector has slightly lower loss than the fancier Fixed
Share to Decaying Past mixing scheme. This is because the latter more sophisticated mixing
scheme “expects” a return to previously used experts. However, the first 10 experts are
all new. When the 10 experts are repeated again (for the second cycle) then the fancier
scheme clearly has lower loss. This shows that the memory effect is still noticeable over a
long period of time. Figure 6 shows the weights on a logarithmic scale. On the top we plot
the weights of the Fixed Share to Start Vector. The behavior of the algorithm is roughly
the same in all sections indicating that the experts in the pool are not “remembered”. In
contrast, the Fixed Share to Decaying Past mixing scheme behaves differently in the first
versus the repeating cycles. The weights are successively raised in the first cycle but then
remain at an intermediate level so that they can be picked up faster in the repeating cycles.
In some sense the Fixed Share to Decaying Past mixing scheme “caches” the weights of
experts that have done well sometime in the past.
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Figure 4: Log weights for the different updates (top: Fixed Share to Start Vector, bottom:
Fixed Share to Decaying Past).
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Figure 5: The memory effect appears even for larger pools and longer periods of time. The
parameters are T = 6000, n = 20000, k = 29 (every 200 trials), m = 10.

6.6 Long Term versus Short Term Memory

In order to better understand the effect of the Mixing Update, we now consider the case
of a single shift. The pool has size 2 and we start with expert 1. At a certain point,
we shift to expert 2 and keep it for the rest of the trials. Figure 7 gives the total loss
plots for this experiment. The interesting part of the experiment is when we monitor the
weights maintained by the different mixing schemes (see Fig. 8). Indeed, the Fixed Share
to Decaying Past displays two different forms of memory. The first one is a “short-term
memory” due to the loss update. At the beginning of each section the weight of the good
expert is picked up exponentially fast (linear in the log plot). Also the weight of the
previously good expert decays exponentially fast at the beginning of the next section. The
second is a “long-term memory” due to the Fixed Share to Decaying Past mixing scheme.
It keeps the weight of the first expert at a higher level so that the recovery is faster if this
expert is reused in the future. The decrease of the long term memory is much slower than
that of the short term memory.

6.7 Cumulative Long-term Memory

The short and long-term memory can work together in intricate ways. We consider again
a pool of size 2. Now the first expert is used in large sections of 200 trials while the
second expert is used in smaller sections of size 50. The two experts are alternately active.
Once again the total loss plots show the superiority of the Fixed Share to Decaying Past
mixing scheme. Also, this setting seems to be poorly handled by the Fixed Share to Start
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Figure 6: Log weights for the different updates (top: Fixed Share to Start Vector, bottom:
Fixed Share to Decaying Past). “max others” is the maximum weight of any
expert outside the pool of 10 experts.
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Figure 7: With only one shift the two Fixed Share schemes perform identically. The pa-
rameters are T = 1400, n = 20000, £k =1, m = 2.

Vector mixing scheme since it is outperformed by the simple Static Experts Algorithm which
essentially treats the short experts as noise.

In order to understand this phenomenon, we can look at the plots of the weights on a
logarithmic scale (Fig. 10). It turns out that the small sections are too small for the weight
of the second expert to get high enough. Thus the Fixed Share to Start Vector is unable to
switch between the two experts. The Fixed Share to Decaying Past mixing scheme faces the
same problem in the first few sections. However, the long-term memory effect is somewhat
cumulative which allows the weight of the second expert to be ratcheted up to a level which
increases over time so that after 5 short sections the intermittent expert can recover in the
short sections.

6.8 Parallel Cumulative Memory Effect

Interestingly enough, the cumulative memory effect can happen simultaneously for a number
of experts. We performed an experiment where the pool contains 9 experts. During all odd
numbered sections expert 1 is active and the length of these sections is all 140 (which is long).
The even numbered sections are only of length 60 each and we cycle through the remaining
8 experts in these sections. The pattern is thus: expert 1 for 7' =1, ..., 200, expert 2 for
t = 201,...,260, expert 1 again for ¢t = 261, ...,400, expert 3 for ¢ = 400,...,460, and so
on. The parameters of the experiment are T" = 21000 trials, n = 20000 experts, k = 208
shifts, and m = 9 experts in the pool. The log-weight plots (Fig. 11) show that the weights
of the interspersed experts 2 through 9 are ratcheted up in parallel.
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Figure 8: Short term versus long term memory effect (top: Fixed Share to Start Vector,
bottom: Fixed Share to Decaying Past).
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Figure 9: Sections with different sizes: long section of 200 trials with shorter ones of 50 trials
interleaved. A cumulative memory effect appears across time. The parameters
are T' = 3200, n = 20000, k = 30, m = 2.

6.9 Variable Share

Finally, we implement the Variable Share version of the mixing schemes (Section 5.3) and,
as expected, we get some improvement. For this we return to the setting of the basic
experiment of section 6.4. Figure 12 compares the loss plots for the Fixed Share and
Variable Share versions of the Start Vector and Decaying Past schemes.

The improvement is even clearer when one looks at the weight plots of Fig. 13 in
comparison to those of Fig. 3.

7. Conclusion

Building on the work of Herbster and Warmuth, we have shown that by mixing the past
posteriors, we can significantly reduce the cost of comparator shifts when the comparators
are from a small pool of convex combinations of the experts. We showed that the total loss
for the Fixed Share to Decaying Past mixing scheme is at most the loss of the best partition
plus the number of bits needed to encode the best partition (including the boundaries of
the sections) plus (a second time) the number of bits needed to encode the boundaries. A
good approximation of this mixing scheme requires time and space O(nlInt) at trial ¢.

We are investigating whether the cost of paying for the boundaries a second time can be
reduced. The off-line problem of finding a partition with k£ shifts from a pool of m convex
combinations and small loss is NP-hard. However we do not know how to obtain lower
bounds from this hardness result.
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Figure 10: An illustration of the cumulative memory effect (top: Fixed Share to Start
Vector, bottom: Fixed Share to Decaying Past).
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Another theoretical question is whether the new mixing schemes can be explained in
terms of priors over partition experts. Indeed, for the Fixed Share Algorithm of Herbster
and Warmuth (1998) (called Fixed Share to Start Vector mixing scheme in this paper) it
has been proven by e.g. Vovk (1999), Herbster (1998) that using one weight per partition
gives an update that collapses to the latter efficient algorithm. However for the general
mixing update we only gave a partial Bayesian interpretation in this paper (see Appendix
A).

As discussed in Section 5, the Mixing Update is rather robust. We showed that mixing
schemes can be mixed to form new schemes that are not much worse than the best of the
original schemes.

The mixing schemes we propose can be extended in various ways. For example one could
cluster the past weight vectors in order to limit the number of weights to be stored and
to improve the identification of the convex combinations in the best comparator sequence.
Also, one could incorporate prior and on-line knowledge about how the best convex com-
bination is changing into the mixing schemes. One way of doing so is to modify the decay
coefficients.

Another open question is whether the parameters «, =, and (in the case of absolute loss)
7 can be tuned on-line using techniques from on-line learning (see e.g. Cesa-Bianchi et al.,
1998, Auer et al., 2000) and universal coding (see e.g. Willems, 1996, Shamir and Merhav,
1999). Following Herbster and Warmuth (1998), slightly improved upper bounds should be
obtainable for the Variable Share modification of the updates when the losses of the experts
lie in [0, 1]. So far we could only show that the Variable Share modifications perform better
experimentally. Also it should be possible to formally prove lower bounds on the loss of any
on-line algorithm in terms of the number of bits needed to encode the partition.

Finally, the loss update analyzed in this paper belongs to the Exponentiated Gradient
(EG) family of updates (see e.g. Kivinen and Warmuth, 1999).2 Any update in the EG
family is derived and analyzed with the relative entropy as a measure of progress (see e.g.
Kivinen and Warmuth, 1997). Thus by Lemma 2 the mixing update can be used with any
member of this family such as EG with square loss for linear regression (see e.g. Kivinen
and Warmuth, 1997) or normalized Winnow (see e.g. Helmbold et al., 1999).

A next goal would be to adapt the mixing updates to other families of updates such
as EGU family (analyzed with the unnormalized entropy) and the BEG family (analyzed
with the componentwise sum of binary entropies) (see e.g. Kivinen and Warmuth, 1997,
Bylander, 1997).
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Figure 11: An illustration of the parallel cumulative memory effect with the Fixed Share
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Appendix A: A Bayesian Interpretation

In this section, we give a partial Bayesian interpretation of the updates given in paper. We
interpret the i-th component of the weight vector as the probability that the current expert
generating the outcomes is expert ¢, conditioned on the past outcomes that were already
observed. It is known that in the case of the log-loss the standard loss update can be seen
as a direct application of Bayes rule.

We prove that this still holds for the Fixed Share to Start Vector mixing scheme. How-
ever for the general Mixing Update we only obtain a Bayesian interpretations after some
approximations.

Assume the following probabilistic model. At trial ¢ an expert from {1,...,n} is chosen
(denoted as the random variable E;) and this expert generates a binary label (the random
variable Y;). We want to investigate under what assumptions does the following hold

Vi = P(Et = ’L"ytfl) and U?:Li = P(Et = ’L‘yt) . (4)

Assume the loss function is the log-loss, i.e. Ly; = —In P(y|Ey = i, y4—1) and n = 1.
By Bayes rule,

P(ys| Ey = i,y4—1)P(Ey = ilyi—1)

> ie1 Pl B = j, yi—1) P(Ey = jlyi—1)
e i P(E =iy, 1)

i e I P(Ey = jlyi—1)

P(E; =ilys)

This is the loss update and is consistent with equations (4).

We now model how the expert Fyy; for the next trial is chosen. We pick a number
q € {0,...,t}, where outcome g has probability 5;11(¢). If ¢ is non-zero, then we switch
to the expert of trial ¢, i.e. Ey41 = e4. If ¢ = 0, then we switch to a random expert. This
gives the following expression:

P(Ei1 =ily) = ﬁt“ + Zﬁtﬂ Eq =ily:) . (5)

Note that summing the r.h.s. of the above expression over i = 1..n gives probability one.
However for the above update we need to maintain the probabilities P(E, = i|y;) for all
g=1,...,tand alli=1,...,n. We do not know how to do this efficiently.

In the case of the Fixed Share to the Start Vector mixing scheme, only f3;+1(0) = a and
Bi41(t) = 1 — « are non-zero and thus

. a .
P(Bur = ily) = S+ (1~ @) P(E, = ily1) -
So via the weight interpretation (4) the above is the Share Update of the Fixed Share to

the Start Vector mixing scheme.
In the general case, if we use the following approximation (for 0 < ¢ < t)

P(E, = ilye) = P(E, = i\yq) )
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then

P(Ey1 =ilyy) = ﬁt“ + ZﬁHl Ey =ily,) -

Notice that the r.h.s. still sums to one when summed over ¢ and the above is the Mixing
Update with the weight interpretation of (4).

We do not know how to obtain a Bayesian interpretation for the Mixing Update without
using the above approximation.

Appendix B: Proof of Corollary 9

We proceed as in the proof of Corollary 8. There are T'—k—1 trials such that w; = u;—1. For
all these trials 3;(g;—1) = B¢(t — 1) = 1 — «, contributing a total cost of ¢(T' — k —1)In =
In all the remaining trials a section is starting. For the first trial 51(0) = 1 and no cost is
incurred. All k other sections start at a trial 1 <¢ <7 —1 and Gi(q1—1) = «

1
. . t—1—-q—1)Zt 1"
The normalization factor Z; can be bounded as follows:

=2 11 =1y
i1 = = - <1 — =14+nt-1)<1+In(T-1).
- qz;t_l_q > o R R VRS FRRE

So the last term of the bound of Theorem 7 is upper bounded by

k
1 1
kln(l+In(T —1 kln— In(t; — 1 —qp—1).
_a+c n(1 + In( ) + ¢ na+c; n( qt,-1)-  (6)

C(T—l—k)lnl

To complete the proof it suffices to show the claim that the last sum above is at most

cklnﬁ—%m—ll.

For each of the m convex combinations u;, we compute the total length of all shift
backs:

Z (ti—1—qu—1) <T—1-s,

ur,; =U;

where s; is the total length of all sections corresponding to #;. By summing over all the
elements of the pool we have

k

k
D (ti—1—gqy-1) < Z m —1)(T - 1).

i=1

Since the last sum of (6) has k£ summands and since In is concave, the sum is maximized

when all shift backs have length E%M This proves the claim.

Appendix C: Keeping the Number of Weights Small

In this section we examine the storage requirement for the different updates and propose a
method for reducing it.

Notice that the Static Experts Algorithm requires to maintain a vector of n weights.
Ideally, we would like the other scheme to have a storage complexity of order O(n).
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For the Fixed Share to Uniform Past mixing scheme it suffices to store the average of
the past vectors vy' (for 0 < g < t). Indeed, it is possible to update this average simply
based on the current weight vector. Thus only 2n weights have to be stored. More precisely,
we have maintain the weight vector vy and the vector of the average of all the past vectors,
denoted ;. The Mixing Update is then computed as

m
Vi+1 = (]. - a)vt +arg ,
where the average r; is computed via

(t - 1)’)",5 + U;n

Tt+1 = 7

For the Fixed Share Update to Decaying Past mixing scheme it is not possible to use
such a strategy and one needs to store all the past weight vectors in order to perform the
Mixing Update. The storage requirement at trial ¢ is thus O(nt).

However, we will sketch an approximate version of this update which has essentially the
same loss bound while requiring only O(nInt) weights to be stored.

In the case of the Uniform Past mixing scheme all past weight vectors have the same
coefficient and thus can be collapsed into an average weight vector. For the best bounds
we need some decaying towards the past. However the value of the coefficients for the past
weight vectors only enters logarithmically into the bounds. So we can group past posteriors
into large blocks. For each block we only keep the average weight vector and the mixture
coefficient for the whole block is the smallest mixture coefficient of all vectors in the block.

We maintain a linked list of blocks whose lengths are powers of 2. This list contains
at most two blocks for each power of 2 and at least one block for each power (up to the
maximal power). For each block only the average weight vector is stored. Each time a new
weight vector is added, a new block with power zero is created and added to the end of the
list. If there are already three blocks of power 0, then the previous two blocks of power 0
are collapsed into a block with power 1. The algorithm proceeds down the list. If a third
block of power ¢ is created, then the previous two are collapsed into a block of power ¢ + 1.
Whenever two blocks are collapsed, their weight vectors are averaged.

It can be proven that the maximum number of nodes in the list is 1+ 2[logt]. Also the
cost per boundary in Theorem 7 is In # and when applying the above method to the

1(aqt)
Decaying Past mixing scheme this cost is increased by at most ycln 2.

Appendix D: Tuning Additional Parameters for the Decaying Past
Mixing Scheme

In this section we introduce a sophisticated version of the Decaying Past mixing scheme
which gives better performance in practice. This scheme is controlled by three parameters
a, ¢ and ~ for which we will give optimal values.

The scheme of interest is defined as follows. For¢t = 1,...,T, let @ and § be real numbers
in (0,1) and let v be a positive real number such that v # 1. We define

Bri1(t) =1—a,
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and for 0 < q < t,

1 1
=(1-9 —
ﬁt+1(q) ( )a (t — q),y Zt )
and
ﬁt+1(0) =ad.
Like in the original scheme, Z; is a normalizing factor defined as
t—1
1
Zy = .
= (t—a)

Now let’s state the bound corresponding to this scheme, which is also a corollary of
Theorem 7.
Corollary 11 For the Mizing Algorithm using the above mixing scheme , for a, 6 € (0,1)

and v > 0,7 # 1, we have for any sequence of T comparison vectors uy with k shifts from
a pool {@y,...,Un} of m convexr combinations, we have

m

T
-1 - m
Lira < ZLt SUt+ CZ (A(Uj, ﬁl) - A(”jﬂ@))

t=1 Jj=1

1
kln — T—-k—-1)1
+c na+c( )nl—a

+c(m — 1)1n%+c(k—m+l)ln1_6

(Tk_—lzinj—_l D) +(1—=y)In(T'-1)+1In

1
1—7

+c(k—m+1) (7 In

Moreover, the optimal choices of the parameters are

oo
T—-1"

m—1

8 = ——
k )

and
In E=mtl g
= <]
g lnk*mil
m—1

Choosing these values for the parameters, the bound becomes

T m
_ 1 - m
Lira < ZLt U+ CZ (A(U’ju —1) - A(“jﬂ%))
t=1 j=1 "
+%mT_1+dT—k—Um?§%%T
k
+c(m—l)lnm_1+c(k—m+l)lnm
T-1 -1 k— 1
+c(k—m+1) (ln el Jm 1) +1nlnL+>
k—m+1 m—1
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Proof We proceed as in the proof of Corollary 9. There are T' — k — 1 trials such that
uy = uy—1. For all these trials §;(q;—1) = Bi(t — 1) = 1 — «a, contributing a total cost of
¢(T—k—1)In 72=. In all the remaining trials a section is starting. For the first trial 8;(0) = 1
and no cost is incurred. Among the remaining k trials where a section is started, m — 1
correspond to the introduction of a new convex combination and the corresponding cost is
cIn < while for the other k — m + 1 trials, we have B;(q—1) = (1 — §)a m.
The trials ¢ where the sections are started verify 1 < ¢ < T — 1 and we can bound the
normalization factor as

t—2 t—2 t—2
1 1 dx
thlzg—z —§1+/ —
S-1-q7 Ha 1

so that

(T—U*”—1<(T—Uk7
1—1 I Sk A

Then the last term of the bound of Theorem 7 is upper bounded by

Zi—1 <1+

c(T—k—l)lnl_a+c(k—m+1)(1—7)ln(T—1)
+c(k—m+1)In (1—5);(1—7) +c(m—1)ln%+0271n(t¢—1—qti,1) ,

i€l
where I denotes the set of indices ¢ such that ¢;, > 0 (i.e. a convex combination from the
pool is reused).

The same argument as in the proof of Corollary 9 shows that the last sum above which
contains k—m+1 elements is upper bounded by ¢y(k—m+1)In ﬁ%%”j_zll which completes
the proof of the first part of the corollary.

Now differentiating the bound with respect to the various parameter yields by simple

algebra the optimal values

o — k 5*:m—1
T—-1" k ’
and N .
— 1M
L_mEE L
7= lnk*mil :
m—1

Replacing these values in the bound yields

T m
-1 - m
ESEEED SITRTERS 31 CNCIE STENNCIRTEY
t=1 j=1
+ck1nT_1+c(T—k—1)1n%
k
+c(m—1)1nm_1+c(k—m+l)lnm
T-1 -1 k— 1
+c(k—m+1) 1+1n( )J(m )lerllnLjL ,
k—m+1 m—1
which concludes the proof. |
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