.

Theoretical Computer Science 45 (1986) 87-119 87

North-Holland
[§]

MANIPULATING DERIVATION FORESTS BY
SCHEDULING TECHNIQUES

Jakob GONCZAROWSKI

Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Manfred K. WARMUTH*
Computer Science Department, University of California, Santa Cruz, CA 95064, U.S.A.

Communicated by E. Shamir
Received November 1985

Abstract. This paper continues the investigation into k-parallel rewriting begun in
(Gonczarowski/Shamir, 1985) and (Gonczarowski/ Warmuth, 1985). This rewriting mechanism
is a generalization of context-free rewriting; instead of applying a single production (or, alterna-
tively, arbitrarily many productions) at each derivation step, exactly k productions are applied.
In the works mentioned above, polynomial dynamic programming algorithms were presented
which require constant k and propagating grammars. We solve the various membership problems
left open in (Gonczarowski/ Warmuth, 1985), for arbitrary grammars, using Scheduling Theory.
We develop various kinds of pumping, obtaining bounds on the sizes of k-derivations and
k-derivation forests. A polynomial dynamic programming membership algorithm is presented for
arbitrary (i.e., possibly nonpropagating) grammars, for fixed k. If k is a variable of the problem,
then membership is in NP and, hence, by (Gonczarowski/Warmuth, 1985), NP-complete. For
unary alphabets, the latter problem is polynomial. Similarly, membership is polynomial in the
size of k if only k is variable.

Contents
L ItrOdUCHI O .. e e e e e 87
2. Basicnotions and ideas e e 90
3. Combinatorial bounds on k-derivations it 94
4. Extended membership complexity 100
5. Membership for nonpropagating grammarsttt 106
6. Summary................ R e e e e 118
References e 118

1. Introduction

The complexity of context-free languages has been the subject of extensive
investigations in the literature (see, e.g., [13, 14]). In particular, the emptiness and

* This research has been done while the second author visited the Hebrew University of Jerusalem.
This research was supported by the United States-Israel Binational Science Foundation, Grant No.
2439/82.

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

88 J. Gonczarowski, M. K. Warmuth

the membership problems are solvable in polynomial time for context-free languages
[8,25]. Similar results were shown for EOL languages [18,23]. The membership
problem of ETOL languages was shown to be NP-complete [4,24]. On the other
hand, context-sensitive rewriting is of a much higher degree of complexity. There
exist fixed deterministic context-sensitive languages for which the membership
problem is PspAace-complete [2]. Moreover, the emptiness problem for context-
sensitive languages is undecidable [14]. We attempt to shed light on some of those
characteristics of rewriting which cause the complexity to grow beyond P.

To gain a deeper insight into the nature of rewriting, selective substitution
grammars were introduced in [20]. A selective substitution grammar consists of an
underlying context-free like rewriting system, and a language, called the selector.
To allow a sentential form to be rewritten, one looks for a word in the selector that
matches the sentential form. In addition, a selector word indicates which symbols
in the sentential form are to be rewritten. In [10], it was shown how closure properties
of the generated languages depend on closure,properties of the selectors. In [16],
a classification of the generated languages was given according to certain properties
of the selectors. One of these properties is ‘symbol-freeness’, which means that the
selector is closed under symbol substitution. Since the identity of individual symbols
is not relevant in symbol-free selectors, the selector is represented by ‘masks’, which
are words over {0, 1}. A symbol in a sentential form is rewritten if and only if it is
matched by a ‘one’ in the selected mask (see, e.g., [16, 17]). Context-free grammars
thus correspond to the selector 0*10*, and EOL systems correspond to 1*.

Another property introduced in [16] is ‘interspersion’; the selector is closed under
the insertion of symbols which are not to be rewritten. For example, the selector
{0, 1}* is the smallest language which contains the EOL selector, and which is
interspersed. It is easy to see that also this selector corresponds to the context-free
languages; rewriting any number of symbols in a sentential form is equivalent to
rewriting exactly one symbol.

It follows from Penttonen Normal Form for context-sensitive grammars [19] that
a language is context-sensitive if and only if it can be defined with a selector that
is of the form

k -
U Z*‘A_igi“:*,
i=1

where X is the total alphabet, k is a positive integer, and A,, B,,..., A, B, are
symbols to be rewritten (a bar over an occurrence indicates that it is to be rewritten).
If we weaken such a selector by requiring symbol-freeness, we obtain the selector
0*110*. Similarly, scattered context languages [9] correspond to the selector

k
U Z*A,Z*B,X*,
i=1

which is the interspersed version of the context-sensitive selector (see [16]). (In

Manipulating derivation forests by scheduling techniques 89

both these cases, the underlying context-free grammar must be propagating; other-
wise, one gets recursively enumerable languages.) We'akening such a selector by
requiring symbol-freeness, we obtain 0*10*10*.

The question that now rises concerns the complexity of the languages defined
with these weakened selectors, and with their generalizations 0*1“0* and 0*(10*)*.
Intuitively, these selectors imply that each derivation step consists of rewriting k
adjacent symbols (any k symbols, respectively). It was proven in [11] that, for
propagating grammars and for k=2, the membership problem is polynomial in
time, and that it is log-space reducible to context-free membership. (Actually, the
polynomial time membership algorithms also solve the parsing problem, i.e., they
can be used to construct parse trees.) In [12], polynomial parsing algorithms were
presented for constant k in the case without the adjacency restriction. These
algorithms again assume that the grammar is propagating. In the same paper, two
closely related problems were shown to be NP-hard for both the adjacent case and
the case without the adjacency restriction; the extended emptiness problem, where
k and the grammar are variable, and the extended membership problem, where k
and the word are variable.

In this paper we concentrate on the selector 0*(10*)* i.e., any k nonterminals
must be rewritten at each step. Main results of this paper are the generalizations of
the polynomial parsing algorithms from [12] for arbitrary, i.e., possibly nonpropagat-
ing, context-free grammars. We obtain a polynomial membership algorithm if k is
constant; if, in addition, the grammar is also constant, then the parsing problem
can also be solved in polynomial time. For this purpose we develop polynomial
bounds on the height of derivation forests and width of derivations. The main
difficulty in obtaining these bounds lies in the possibility of erasing. Here it is not
even possible to obtain polynomial bounds on the size of derivation trees, as there
are derivation trees whose number of nodes is exponential in the size of the grammar.

Using somewhat different techniques, we show that the extended membership
problem for unary words can be solved in polynomial time, even if k is part of the
input.' This result is contrasted with the fact that the same problem is NP-hard if
the alphabet consists of at least two symbols (cf. [12]). In fact, we prove in this
paper that the extended membership problem for arbitrary size alphabets is in NP
and, hence, NP-complete.

As a corollary we also obtain a polynomial bound for another variation of the
membership problem, where only k is variable (denoted in unary notation) and
both the grammar and the word are fixed (for arbitrary alphabets).

The techniques used for obtaining the above-mentioned bounds and algorithms
~are nonstandard for Formal Language Theory. We make use of the relationship
established in [12] between k-derivations and the k-processor unit-length task
scheduling problem of forests (see, e.g., [3, 6, 15]). In particular, the notion of a

' As explained in [12], we start out with S* in this case, because otherwise the problem is trivial; if
k were larger than the maximum right-hand side, the language would consist only of those words which
can be directly derived from the start symbol.

90 J. Gonczarowski, M.K. Warmuth

‘median’ [6, 7], together with highest-level-first schedules, was applied in [12] to
create polynomial dynamic programming algorithms for fixed k. In this paper we
use the notion of median to develop nontrivial bounds on the length of k-derivations
and of their sentential forms for arbitrary grammars; no propagating restrictions
are assumed. In particular, to obtain one of these bounds, a new heuristic for
obtaining optimal schedules is introduced; ‘highest-lowest’ scheduling.

The plan of this paper is as follows. In Section 2, we introduce the needed notions
from Formal Language Theory and Scheduling Theory. In Section 3, we develop
bounds on derivation lengths and widths. In Section 4, we apply these bounds to
obtain the polynomiality of the extended membership problem (where the word
and k are variable) for unary words, the NP-completeness of the extended member-
ship problem in the general case, and the polynomiality of the membership problem
where only k is variable. In Section 5, we first prove a bound on the height of
k-derivation forests that is polynomial in the alphabet size and in the length of the
derived word. This bound is used to develop a dynamic programming membership
algorithm in the Earley style [8], the running time of which is polynomial if k is
constant. In addition, if the grammar is fixed, a variant of this algorithm can be
used to extract the corresponding parse tree in polynomial time. The paper is
concluded by a table that summarizes the complexity results obtained for all the
possible cases of k-parallel rewriting without adjacency restrictions. These results
were obtained in this paper and in [12]. In the adjacent case, the complexity for
k=3, as well as for nonpropagating grammars and k =2, is still open. Partial results
are presented in [5, 11].

2. Basic notions and definitions

We assume the reader to be familiar with basic Formal Language Theory, as, e.g.,
in the scope of [13, 21, 22]. Some notions need, perhaps, an additional explanation.
An alphabet X is a finite set of symbols. A word w is a finite sequence of symbols,
and |w| stands for its length. The empty word is denoted by A. A language is a set
of words. The reflexive and transitive closure of a language L is denoted by the
Kleene Star and is written as X*. We shall identify a singleton set {a} with its
element a whenever this does not cause confusion. The cardinality of a set X is
denoted by # X.

A context-free grammar (CFG) G is a quadruple (X, P, S, 4), where X is the
alphabet of G, 4 is the terminal alphabet of G; X — A is the nonterminal alphabet
of G and is denoted by Nt(G), P< (X —4)x X* is the set of productions of G,
Se X -4 is the start symbol of G.

If we X*, then we denote by Nt(w) the word that is obtained from w by erasing
all the terminal symbols.

Using standard Formal Language notation, we will write A > x if (A, x)e P. The
length of the longest right-hand side of a production in G is denoted by Maxr(G).

Manipulating derivation forests by scheduling techniques 91

Let uy,...,uceX* and let (A, w),...,(A, w)eP. We then say that
upAyuy A, .. Aguy directly derives ugw uw, . .. weuy in (G, k), and we write

UgA U As . Ay ? UoW UL Wy ... Wil

(We shall omit k if k=1, and we write then =5; we shall omit G if it is obvious
from the context.)
We denote by = ;. and =¥, the transitive closure and the reflexive and transitive
closure of =;, respectively. If u =%, v, then we say that u derives v in (G, k).
A k-derivation in G is a sequence of words x,,..., x4, such that, forall 1<i<|

X == X1,
Gk

together with a mechanism that keeps track of the individual productions applied
at each step. (Such a mechanism is necessary, as there might be more than one way
to obtain x;,, from x;.) We shall not specify this mechanism explicitly, in order to
keep the definitions concise. The length of a k-derivation x,, ..., x,, is I, its width
is max{|x;|: 1<i=<[I+1}, and its i-th step is the process of deriving x,,, from x;.
A sentential form (of G) is a word x, such that S =¥ x.
The (unrestricted) k-language of G is the set

b3
U G)={we Ad*:3ue I*such thatS-?u and u = w}.
Gk

2.1. Remark. (1) We observe that U,(G) is the context-free language defined by
the grammar G. We thus assume in the sequel that k=2. To avoid other trivial
cases, we assume also that Maxr(G) = 2.

(2) Since rewriting begins with the start symbol, derivations of words in the
k-language consist of one l-derivation step (to rewrite S), followed by a number
of k-derivation steps. In particular, all words directly derived from S are in U, (G),
for all k (this implies that the family of k-languages contains all the finite languages).

We shall use trees and forests in the usual manner of Formal Language Theory.
The reader is assumed to be familiar with the basic notions, such as root, parent,
child, ancestor, descendant, internal node, and leaf.

The height of a node is the distance to its furthest descendant. Leaves thus have
height zero. The height of a forest F is the height of its highest root and is denoted
by height(F). The size of F, denoted by |F|, is the number of nodes in F. The width
of F, denoted by #F, is the number of trees in F,

2.2. Remark. One has to distinguish the height of a derivation forest from the length
of a derivation. The latter is usually much larger.

92 J. Gonczarowski, M.K. Warmuth

If F is a forest, then the bare forest of F is the forest obtained by deleting all
the leaves in F; it is denoted by Bare(F). Note that, for all forests F,
height(Bare(F)) = height(F) — 1. A derivation forest is a forest where each internal
node is labelled with a nonterminal of the grammar. Furthermore, if a node is
labelled with the nonterminal A, and its children’s labellings (from left to right)
form the word x, then A- x must be a production of the grammar. In particular,
a k-derivation forest is a derivation forest that corresponds to a k-derivation. We
represent an erasing production by a leaf labelled with A below the node to which
that production is applied (this is to guarantee that the bare forest of a derivation
forest captures all those nonterminal symbols which are rewritten).

Some of these notions are illustrated in the following example.

I

AN A
A\

Fig. 1. A derivation forest that is not a 2-derivation forest.

2.3. Example. Let G be the CFG ({S, A, C, a,b,c,d}, P, S,{a,b,c, d}), where P
consists of the following productions:

S-> AC, A - aAb, A- ab, C - cCd, C-cd.

Figs. 1 and 2 each show derivation forests. The forest in Fig. 1 is not a 2-derivation
forest, whereas that in Fig. 2 is a 2-derivation forest.
Further examples are given in [12].

A C

/N /N

a A b ¢c C d

/A\b /C\d
VANVAN

Fig. 2. A 2-derivation forest.

Manipulating derivation forests by scheduling techniques 93

We now proceed to define schedules on forests. We assume that there are k
processors (corresponding to rewriting k symbols at each derivation step). Every
node in a forest is considered to be a unit-length task, where the parent-child
relation in the forest specifies the precedence constraints. A k-schedule is then a
sequence of slots, where each slot contains up to k tasks, indicating what tasks are
to be scheduled in the corresponding unit of time. This is formalized in the following
definition.

2.4. Definition. Let F be a forest and let k =2. A k-schedule of F is a function o
mapping the nodes of F onto the set {1,..., I}, for some I<|F]|, such that

s Is#o '(i)sk forall lsis<l;

* for each pair of nodes v,, v, in F, if v, is a successor of v,, then o(v,) > o(»,).

The nodes of F are also called tasks. I is called the length of o, and o~'(i) is
called the ith slot of o.

The tasks of slot i are scheduled at time i (i.e., #0 ~'(i) out of the k processors
are assigned a task at that time). There are k—# 0 ~'(i) idle periods in slot i.

A schedule o has p(o) idle periods, where

]
plo)= -}_:, (k=#07'(i))=1-k—|F|.

A schedule o is optimal for F if there is no schedule ¢’ of F with p(d’)<p(o).
(Note that optimal schedules have minimal length.) The number of idle periods of
F, p(F), is the number of idle periods in an optimal schedule for F.

A schedule o is perfect if p(o)=0.

2.5. Example. The following is a perfect 2-schedule for the bare forest of the
derivation forest of Fig. 2.

Time slot
112 |3
AlA A
c|C |C

It is easy to see that there is a natural correspondence between k-derivation forests
and perfect k-schedules of their bare forests; if v,,..., v, are the nodes labelled
with the symbols that are rewritten in step i, then v,,..., v, appear in slot i of the
corresponding schedule.

Using the above notions of Scheduling Theory, we can now give alternative
definitions of k-derivation forests and k-languages (see [12]).

94 J. Gonczarowski, M.K. Warmuth

2.6. Lemma. (1) A derivation forest is a k-derivation forest if and only if its bare forest
has a perfect schedule.

(2) Let G=(X, P, S, A) be a CFG. A word w is in U, (G) if and only if there exists
a derivation tree T of w from S in G such that p(Bare(T))=k—1.

A Highest-Level-First (HLF) k-schedule for a forest F is obtained as follows:

(1) if F consists of at least k trees, then o~'(1) contains the roots of the k highest
trees (for trees of equal height, the choice is arbitrary); V

(2) otherwise, o~'(1) is the set of all the roots;

(3) the tail of the schedule is constructed similarly, with the nodes in o~'(1)
deleted from F.)

In one of the first papers of Scheduling Theory [15], it was shown that scheduling
upside-down forests according to HLF produces optimal schedules. More recently,
the same was shown for ordinary forests.

2.7. Theorem ([3, 6]). Any HLF schedule for a forest is optimal.

The k-median (see [6, 7]) is a certain height that allows us to distinguish between
that part of a forest that is hard to schedule (the ‘high forest’) and that part which
is easy to schedule (the ‘low forest’). The k-median of a forest F is one plus the
height of the kth highest tree of F; it is denoted by u.(F). If F contains less than
k trees, then the median is zero. The k-high forest of F is the set of all those trees
in F which are strictly higher than the median. The k-low forest is the set of the
remaining trees. These forests are denoted by High,(F) and Low,(F), respectively.
Whenever k is understood from the context, we shall drop k and write high forest,
low forest, median, etc. The importance of the median is expressed by the following
lemma (cf. [12, Lemma 3.3]).

2.8. Lemma. Assume that the HLF schedules for High(F) have q idle periods. Then
the HLF schedules for F have

(1) g—|Low(F)| idle periods if q=|Low(F)|, and

(2) —|F| mod k idle periods otherwise.

3. Combinatorial bounds on k-derivations

We shall first show that a wide forest of small height has a perfect schedule, as
long as its size is a multiple of k, using Lemma 2.8. Using this fact, we shall show
that every wide enough k-derivation forest can be reduced in height. As a next step,
we shall bound the width of sentential forms in k-derivations by a function of the
height of k-derivation forests. Combining the above results, we obtain a bound on
the k-derivation width that is polynomial in k, in the length of the word, and in the
size of the grammar.

Manipulating derivation forests by scheduling techniques 95

3.1. Lemma. Let F be a forest such that
|Fl=0mod k and #F =(k—1)(height(F)+2).
Then p(F)=0.

Proof. Note that an HLF schedule has at most k—1 idle periods for each height,
including height zero. It thus follows that

p(High(F)) < (k — 1)(height(F) +1).

F consists of at least (k—1)(height(F)+2) trees. Therefore, Low(F) consists of at
least (k—1)(height(F)+1) trees, i.e., [Low(F)|=p(High(F)). Applying Lemma
2.8(2), we obtain that

p(F)=—|F|mod k=0. a
3.2. Remark. Note that, in Lemma 3.1, the whole forest is scheduled. However, as
pointed out in Section 2, when we want to apply Scheduling Theory to derivations,

we schedule the bare forest of the derivation forest. Hence, for a derivation forest
F, the bound will be height(F)+1 rather than height(F)+2.

The following combinatorial lemma will be needed in the sequel.

3.3. Lemma. Let k be a positive integer, and let I,, ..., 1, be a sequence of positive
integers such that

l;=imod k
1

13

J
Sfor some i=0. Then there are distinct indices t,,...,t,€{l,..., m}, where 0<g=<
k-1, such that

q
Y I,j=imod k.
j=1

Proof. If m=k—1, then the lemma follows. Let thus m = k. We look at the partial
sums

s,= Y lmodk,
j=1

for all 0<r=<m. There must now be indices r, and r,, 0<r,<r,<k, such that
S, =S,,1.e, L+ -+ =0mod k. We delete , ,,, ..., [, from the given sequence
and repeat the above process, until we obtain a sequence of length up to k—1,
which willbe [, ..., I,q. Since all the elements removed sum up to 0 mod k; it follows
that

q
2 l,=imodKk,

j=1

and thus, the lemma holds. O

96 J. Gonczarowski, M.K. Warmuth

Using the preceding lemmas, we can now show that, for every k-derivation forest
of sufficiently large width, there is an equivalent k-derivation forest of bounded
height.

34. Lemma. Let G=(3, P, S, A) bea CFG, letk=2, and let xe 3* and we A* such
that x =&, w. Let

h=(wl+#Z+k)#3, and b=(k-1)(h+1).

If Nt(x) = b, then there is a k-derivation forest F' of w from x such that height(F') < h.

Proof. Let F be a k-derivation forest of w from x. If height(F) < h, the lemma
trivially holds for F. Otherwise, we construct F’ by iteratively ‘unpumping’. We
replace subtrees of F that correspond to a derivation A=>; A by a single node
labelled with A. We thus obtain a forest F’' with the required height bound that has
0 mod k internal nodes. It then follows from Lemma 3.1 that p(Bare(F’)) =0, i.e.,
F' is a k-derivation forest.

To construct F’, we use the following concept. A shrink ¢ (of a nonterminal A)
is a derivation tree of A from A such that no symbol occurs more than once on
any path, except for A, which occurs exactly twice as indicated. Note that height(¢) <
#3, and |¢|<Maxr(G)***".

At first, we iteratively replace shrinks by their roots (i.e., a subtree deriving a
symbol A from itself is replaced by a single node labelled with A, until no more
shrinks are left in the forest). The resulting forest F, will be of height <(|w|+1)#X.
We proceed to prove this bound.

Assume, on the contrary, that height(F,) > (Jw|+1)# 3. We call those nodes that
derive a nonempty subword of w propagating. A growing node has at least two
propagating children. Obviously, there are at most |w| —1 growing nodes in F,. If
there is a path in F; that contains # 2 + 1 successive propagating nodes, all of which
derive the same subword u of w, then at least two of these nodes must be labelled
with the same nonterminal, say A. Therefore, A =5 A =¥ v. Hence, there exists a
shrink in F,, which is a contradiction to the definition of F;.

Each growing node is thus preceded by at most #3 — 1 nongrowing (propagating)
nodes. Similarly, each symbol in w is also preceded by at most #2 — 1 nongrowing
(propagating) nodes. Therefore, each path from a root to a symbol in w contains
up to |w|#Z2 nodes.

Since height(F,)> (|w|+1)#X =|w|#X + #2Z2, it follows that there is a path that
contains at least #X + 1 (subsequent) nonpropagating nodes (followed by a A-leaf).
Two of these nodes must be labelled with the same nonterminal, say A. It follows
that A=>5 A=% A, i.e., there is a shrink in F,, and we arrive at a contradiction.
Hence, the height bound holds.

F, satisfies the required height bound; we must, however, guarantee that
|Bare(F,)| =0 mod k. To achieve this, we re-insert shrinks into F;. Note that we are
not free at this stage to freely choose among all the shrinks that we have eliminated;

Manipulating derivation forests by scheduling techniques 97

possibly, a nonterminal A from the original forest F was deleted altogether in the
shrinking process. A shrink of such an A cannot be re-inserted at this point. We
must thus make sure that all nonterminals which appeared in the original forest F
will also appear now. This is achieved by successively adding shrinks to F, such
that each shrink introduces at least one new symbol. After adding at most #3 —1
shrinks, the resulting forest F, contains all of the symbols that occurred in F.
Moreover,

height(F,) < height(F,)+ (#3 — 1)#X.

Let @1, ..., ¢, be the sequence of all those shrinks that were deleted from F and
not added while constructing F, from F,. Obviously,

|Bare(F,)|+|Bare(¢,)|+- - - +|Bare(¢,,)| =0 mod k

since |Bare(F)|=0mod k. By Lemma 3.3, there are distinct indices t,, ..., tyy <
k —1, such that

|Bare(F,)| +|Bare(¢,,)|+ - -+|Bare(¢,)| =0 mod k.

Inserting the shrinks ¢, , ..., ¢, into F,, we obtain a forest F'. F’' is a derivation
forest of w from x and |Bare(F’')| =0 mod k. Moreover,

height(F') < height(F,) +(k—1)#X
S(wlH1+#3S - 1+k-1)#I<(|w|+#Z+k)#3Z =h.

Hence, F’ satisfies the height bound, and the lemma follows from Lemma 3.1. O

3.5. Remark. b and h in Lemma 3.4 are actually (polynomial) functions in |w|, k,
and #2. Rather than writing them as such, we prefer, for the sake of conciseness,
to omit their arguments. This should not cause confusion.

Lemma 3.4 permits us to decompose each k-derivation into two parts; a ‘narrow’
part (all sentential forms have at most b nonterminals), and a ‘wide’ part, which
begins with the first sentential form that has more than b nonterminals. Lemma 3.4
guarantees that there is a k-derivation forest for the wide part of bounded height
<h. The narrow part of each k-derivation is of width polynomial in #3, k, and |w/|,
whereas the width of the wide part is polynomial in k and |w|, but it might be
exponential in # 2. The following lemma guarantees the existence of a k-derivation
for the wide part that is of width polynomial in k and |w|, as well as in the size of
the grammar.

3.6. Lemma. Let G=(3, P, S, A) be a CFG, and let F be a k-derivation forest in G,
for some k=2. Then there is a k-derivation x,, ..., x,, of F such that
Nt(x;) < b= max(#Bare(F), (k— 1)(height(F) + 1)+ k Maxr(G))
+ k(height(F) —1) Maxr(G),

forall 1<ism.

98 J. Gonczarowski, M. K. Warmuth

Proof. We will construct a perfect schedule o for Bare(F), that chooses lowest-height
roots whenever the forest becomes too wide, according to Lemma 3.1. This prevents
the number of roots from growing above 5, as will be shown later.

The formal construction follows. Let F; denote the subforest of Bare(F) which
is obtained by removing all those nodes that were scheduled before slot i. Note that
F,=Bare(F). We will prove that, for all i, #F, < b. Let Xy, Xa,...,Xm=w be the
k-derivation that corresponds to o, i.e., the nodes rewritten in step i are exactly
those nodes that are scheduled in slot i of 0. Then, obviously, # F; = Nt(x;) for all
1 <i<m, and the lemma follows.

We present the schedule o. Later on we shall prove that # F; < b and that o is
perfect. The schedule o is constructed by the following algorithm.

begin
for i:=1 to |Bare(F)|+ k do
begin
if #F,<(k—1)(height(F)+2)
then o~ '(i) = k highest roots of F;
else o~ '(i) = k lowest roots of F;;
end;
delete the nodes in o~ '(i) from F, to obtain F,,,;
end;

We show by induction on i that p(F;)=0. It then follows that o is a perfect
schedule.

Basis step: Since F,= Bare(F) and since F is a k-derivation forest, it follows
that p(F,)=0. ’

Induction step: Assume that p(F;)=0 for all 1<j=<i We want to show that
p(F.,)=0. If ¢~'(i) is a set of highest roots, then we make use of Theorem 2.7.
By the induction hypothesis, p(F;) =0. Hence, every HLF schedule of F; must be
perfect. Thus, in particular, after scheduling k highest nodes, the remaining number
of idle periods is still zero, i.e., p(Fi4,) =0.

Otherwise, if o~'(i) is a set of lowest roots, then # F; > (k —1)(height(F)+2) and
thus, #F,,, = (k—1)(height(F)+1). Clearly,

height(F;,,) < height(Bare(F)) = height(F) — 1.
We conclude that
Fii = (k—1)(height(Fi,,) +2).

Therefore, by Lemma 3.1, p(F;) =0. The induction hypothesis thus holds for i+1.

We have proven that the above algorithm produces a perfect schedule o. It remains
to show that #F; < b for all I<i<m. Obviously, this is true for i =1. For those
slots i, 2< i< m, for which highest roots were chosen,

#F,<(k—1)(height(F)+2)<b.

Manipulating derivation forests by scheduling techniques 99

We therefore assume that lowest roots were chosen for slot i. Let j be the minimum
slot, such that lowest roots were chosen for the slots j, j+1,..., i. We shall see that
a consecutive sequence of lowest schedules adds at most kMaxr(G) roots to F; for
each height between 0 and height(F;) — 1. Note that either j = 1, or else highest roots
were chosen for slot j— 1.

In the former case, #F;=Bare(F). In the latter case, #F_ <
(k= 1)(height(F)+2), and k roots are rewritten to be replaced by at most kMaxr(G)
new ones. Hence,

F; < max(Bare(F), (k—1)(height(F)+ 1) + kMaxr(G)).

The lemma thus follows for F; if we show that at most kMaxr(G) roots are added
for each height between 0 and height(F;)—1.

Let r, be the number of those roots of F; which are of height g, for 0<g=<
height(F;). We shall see that the number of roots of height g in each of the forests
F;, ..., F; is at most r, + kMaxr(G), for 0=< g <height(F;) — 1. Obviously, this holds
for F;. Assume, on the contrary, that there is an [, j+ 1 <I<, such that F, has more
than r, + kMaxr(G) roots of height g for some 0= g <height(F;) — 1, whereas F,_,
has at most r,+ kMaxr(G) such roots. F, has more roots of height g than F_,.
Therefore, some nodes of height at least g +1 must have been scheduled in slot
I —1. Since lowest roots were chosen for that slot, this implies that all roots of F,_,
with height <q must have been scheduled in slot / —1. Hence, F; can have at most
kMaxr(G) roots of height g, which is a contradiction.

We have shown that the number of roots of height g in each of the forests
F, ..., F; is at most r, + kMaxr(G) for 0< g <height(F;) — 1. Clearly, height(F;) <
height(F) — 1. '

We now get

height(F,)—1
#F, < y (rg + kMaxr(G)) + heign £,) = # F; + height(F}) - kMaxr(G)

q=0

< max(#Bare(F), (k—1)(height(F)+ 1)+ kMaxr(G))
+ k(height(F) — 1) Maxr(G) = b.

Hence, the lemma holds. O

We can combine the two preceding lemmas to guarantee that, for each k-derivation
forest of a word w, there exists a k-derivation of w whose width is polynomial in
k, |w|, and the size of G.

3.7. Theorem. Let G=(3, P, S,A) be a CFG, and let k=2, Let xe X* and we 4*,
such that x =%, w, and Nt(x)<b. Let d = kh(Maxr(G)+1) (b and h were defined
in Lemma 3.4). Then there is a k-derivation x = x,, X, ..., Xm = w such that |x;| < d,
forl1<ism.

100 J. Gonczarowski, M.K. Warmuth

Proof. Let x =y, y,,..., 11,)= w be a k-derivation. If, forall 1 <j < I, Nt(y,) < b,
then the lemma holds for the k-derivation y,, ..., y, because b+|w|<d.

Let thus i be the first index such that Nt(y;)>b. By Lemma 3.4, there is a
k-derivation forest of F of-w from y; such that height(F) < h. We let x; = y; for all
1<j=<i Applying Lemma 3.6 to F we obtain a k-derivation y;=x;, Xit1,..., Xm_1,
X,, = w, such that

Nt(x;) < max(b+ kMaxr(G), (k—1)(h+1)+ kMaxr(G))+ k(h — 1)Maxr(G)
= b+ kMaxr(G) + k(h — 1)Maxr(G) = b + khMaxr(G),
for all i <j=<m. Hence,
|x;j| < b+ khMaxr(G)+|w| = kh+(k—h—1+|w|) + khMaxr(G)
< kh(Maxr(G)+1) =d,
and the theorem holds. [

4. Extended membership complexity

In [12], it was shown that the UXM-problem is NP-hard: Let G be a fixed
grammar. Given k and w as input, one wants to determine if S* =&« w. Theorem
3.7 gives us the capability to solve this problem in polynomial time for unary words
w, i.e., words over a one-letter alphabet. Another consequence of Theorem 3.7 is
that one can solve the problem in nondeterministic polynomial time for words w
over unrestricted alphabets; thus, the problem is NP-complete.

In the unary case, w is commutative. Rather than operating on words, we shall
therefore operate on commutative images of words, in the form of Parikh vectors
(see, e.g., [13]). These are defined now.

4.1. Definition. Let G=(X P, S,A) be a CFG such that 3 ={A,,..., A.s} is
ordered under an arbitrary but fixed order. Let x € 3*. The Parikh vector of x, y(x),
is the vector (iy,..., i.5)eNZ* where i; is the number of occurrences of A; in x
for 1sj<s #J.)

Since Parikh vectors represent commutative images of words, we can extend
notions that were defined for words to Parikh vectors in a natural way. In particular,
the length of a Parikh vector ¢ is the sum of its components; it is denoted by |¢p|.
Let ¢ and x be Parikh vectors. We say that ¢ directly derives x if and only if there
exists words x, y € 2* such that ¢(x) = ¢, Y(y) = x, and x =g, y; We write ¢ =g X-

A Parikh k-derivation is a sequence of Parikh vectors x,, ..., Xm, m =1, such that
Xi=GiXi+1 for 1<i=m-—1. We then say that x, k-derives x, and we write

X1=>Ex Xm-

The following lemma establishes the relation between ordinary k-derivations and
Parikh k-derivations.

Manipulating derivation forests by scheduling techniques 101

4.2. Lemma. Let G=(2X P, S, A) be a CFG, and let k = 2. Then there is a k-derivation
Xi,..., X, if and only if there exists a Parikh k-derivation x,,..., Xm Such that
Y(x;))=xifor 1sism.

Proof. The ‘only if’-direction trivially follows from the definition. We shall show
the ‘if’-direction by induction on m.

Basis step: Let m=1. Then, obviously, x, is a k-derivation for all x,€ ¢ ' (x;).

Induction step: We assume that the induction hypothesis holds for m. Let
Xy,..., X, be the k-derivation that corresponds to x,,..., Xm- By the definition of
k-derivations, there are y and z, y€ ¢ "'(xm) and z€ ¢ '(Xm+1), such that y directly
derives z in (G, k). We apply the same k productions used in that derivation step
(but maybe in a different order) to derive a word x,,+, from x,,. Hence, x,,..., X,
Xm+ 1S @ k-derivation that satisfies the lemma. O

We observe that, for unafy words w, ¢ is one-to-one. Combining Lemma 4.2 with
Theorem 3.7, we obtain the following characterization result.

4.3. Corollary. Let G=(3, P, S, A) be a CFG and let k=2. Let we A* be a unary
word. Then S* =% w if and only if there is a Parikh k-derivation

l//(Sk)=X|, X2y °,Xm—l’Xm=d/(w),

such that |x;|<d, forall 1<i<m.

Note that there are at most (d + 1)** Parikh vectors of length <d (each component
in a vector can take a value between 0 and d). This quantity is polynomial in k and
|w|. This is the reason why we get a polynomial algorithm if G is constant.

4.4. Theorem (Unary UXM-Problem). Let G=(2, P, S, A) be a fixed CFG. It can
then be decided in polynomial time, for inputs k=2 and unary words we A*, whether
Sk :E,k w.

Proof. We prove that the unary UXM-problem requires time O(d**k*"). We
construct a directed graph, where the nodes are all the Parikh vectors of length up
to d. Given two vertices ¢ and y, we establish an edge between ¢ and y if and only
if @ = x. Then, by Corollary 4.3, we know that there is a path from ¥(S*) to
¢(w) if and only if S* =%, w. To determine the existence of such a path, we use
a Depth-First Search traversal of the graph, starting at ¥(S*). This is linear in the
size of the graph (see, e.g., [1]). It remains thus to be shown that the graph can be
constructed in time O(d**k*").

A transition is a pair of Parikh vectors (¢, n), such that [{|=k and { =g 7. It
is now easy to see that, for all Parikh vectors ¢ and x, ¢ =g x if and only if there
is a transition (¢, n) such that ¢ — ¢ is a valid Parikh vector (i.e., it has no negative
components), and ¢ — ¢+ n = x. The Parikh vector { corresponds to the symbols

102 J. Gonczarowski, M.K. Warmuth

being rewritten, and 7 corresponds to the right-hand sides of the productions being
used. The total number of transitions does not exceed (k+1)*", because each
production can occur between zero and k times. Obviously, it takes no more than
O((k+1)*") time to construct the set of transitions (we recall that the grammar is
constant).

Having computed all the transitions we proceed to construct the edges. For each
node ¢, we try to apply all the transitions (¢, n). If ¢ —¢ is a Parikh vector and
¢ —¢+m|<d, then we put an edge from ¢ to ¢ —¢+ 7. Each such test takes a
constant number of steps since #3 is constant. There are up to (d +1)** nodes.
Since the number of transitions is at most (k+1)*", it takes at most O(d**k*")
time to construct the desired graph. [

4.5. Remark. Theorem 4.4 also holds if rewriting starts with an arbitrary axiom of
length <b; it is obvious that we may permute the axiom in any way, without affecting
the outcome of a k-derivation from the axiom. Hence, the Parikh vector technique
is also applicable for this case.

We have thus proven that the UXM-problem is in P for unary words w. To show
that the same problem is in NP if the alphabet is not restricted, we first prove a
bound on the length of k-derivations.

4.6. Lemma. Let G=(3Z, P, S, A) be a CFG, and let k=2. Let x€ 3* and we A*,
such that |x|<b and x =%, w. Let T=(d+1)**-(|w|+1)**". Then there is a k-
derivation of w from x of length <|w|l.

Proof. Theorem 3.7 allows us to restrict ourselves to k-derivations of width up to
d. It could, however, still happen that the length of a k-derivation is exponential
in d (and, therefore, in k and |w|). To prove the existence of a shorter k-derivation,
we partition the original k-derivation into ‘blocks’ such that in each block, only
nongrowing occurrences of symbols are rewritten. (We recall that propagating and
growing nodes were defined in Lemma 3.4.)

It will be shown that for each block there is an ‘equivalent’ block whose length
is bounded by I. Since the number of growing nodes is less than the length of the
derived word, the lemma then follows.

To find blocks of bounded length, we shall use Parikh vectors, similarly as in the
proof of Theorem 4.4. We observe first that nonpropagating occurrences of symbols
can be repositioned within a sentential form without effecting the terminal word
derived from it. This permits us to represent the nonpropagating occurrences by
Parikh vectors. A similar Parikh-vector representation will be established for propa-
gating symbols. We represent a propagating symbol A by the ‘twin’ [A, B], where
B is the (unique) propagating symbol to be derived from A at the end of the block.
As we shall prove later on, these twins are permutable and can thus be kept track
of by using Parikh vectors (over the twin alphabet). Therefore, the block length can

Manipulating derivation forests by scheduling techniques 103

be bounded by the product of the number of possible Parikh vectors over the
ordinary alphabet ((d + 1)** for the nonpropagating symbols) times the number of
possible Parikh vectors over the twin alphabet ((|w|+1)’“:2 for the propagating
symbols). The formal construction and proofs follow.

Let x=2Xx,, Xa,...,Xm—1, Xm =w be a k-derivation. A block B is a maximal
consecutive subsequence of x,,...,x, (and, therefore, itself a k-derivation)
X,, ..., X,+1—; such that only nongrowing symbols are rewritteninsteps t,..., t+1—2.
Note that if x,.,_, # w, then growing symbols are rewritten in step t+[—1.

The k-derivation contains at most |w| — 1 growing nodes. Hence, the total number
of blocks does not exceed |w|. It remains, therefore, to be shown that for each block
there is an ‘equivalent’ k-derivation of length less than

d+1)">(w|j+1)*¥ =1

Since each block is followed by at most one ‘growing’ step, the resulting k-derivation
length does not exceed |w|I, and the lemma follows.

We proceed to prove that, for each block 9, there exists such a k-derivation &
of length <7 —1. As pointed out above, if y =%, w, then it follows that z=§, w
for all words z which are obtained from y by changing positions of nonpropagating
symbols. We thus arrive at the following definition:

Let @, and 9, be k-derivations,and let By, ..., B,€ 2. 9,and D, are (B, ..., B,)-
equipropagating if they agree on their first words and on the Parikh vectors of their
respective last words (i.e., one last word is a permutation of the other), and if
B,, ..., B, occur in both last words, in this order.

Let B be a block, let @ be a k-derivation, and let B,, ..., B, be the sequence of
propagating occurrences in the last word of %3. Then % and & are equipropagating
if they are (B,, ..., B,)-equipropagating.

We may replace a block B, x,, ..., x,4/_, by an equipropagating k-derivation &,
maybe having to change positions of nonpropagating symbols in x,,,, ..., X, The
resulting derivation will still be a k-derivation of w from x, because changing
positions of symbols that ultimately produce the empty word do not affect the
outcome of the derivation. It thus remains to be shown that for each block 9 there
is an equipropagating k-derivation 9 of length < I

Let B be the block x,;..., x,4,;_;. Each x;, t<j=<t+1-1, is represented by two
Parikh vectors; an ‘ordinary’ Parikh vector x for the nonpropagating symbols and
a Parikh vector ¢, over an extended alphabet, for the propagating symbols. We use
ordinary Parikh vectors for nonpropagating occurrences of symbols in x;, because,
as said before, their positions are irrelevant for the final outcome of the k-derivation
since they ultimately yield the empty word. Note that there are at most (d+1)**
distinct such Parikh vectors, because each symbol can occur in x; between 0 and d
times. ’

A propagating node v that contributes to x; (i.e., whose label occurs in x;) either
has exactly one propagating descendent »’ that contributes to x,4+-;, Or else v itself
contributes to x,.,_,. In the latter case we let ' = v. The occurrence of the label of

104 J. Gonczarowski, M. K. Warmuth

v in x; is then represented by a twin [A, B]e £ x X, where A is the label of v and
B is the label of v'. Intuitively, B thus specifies the symbol that A needs to derive
at the end of the block. Keeping track of this information allows us to permute the
symbol pairs. Hence, the propagating nodes of x; are represented by a Parikh vector
¢ over X x X, which counts the occurrences of twins.

Note that the total number of these Parikh vectors does not exceed (|w|+ l)’”z,
because each twin can occur at most |w| times in a given x;. The pair (¢, x) is called
the Parikh vector pair (PVP) of x;, and is denoted by = (x;).

The total number of distinct PVPs is thus bounded by

[=(d+1)** (Jw]+1)**",

We can now define k-derivations between PVPs. Then we shall show that one can
go from the block 9 to a PVP k-derivation 2. Eliminating repetitions from % one
obtains a PVP derivation ' of length <I—1. From there, one can return to a
k-derivation 9 that is of the same length as ?' and that is equipropagating to the
original block 9. A PVP k-derivation step will consist of rewriting k ‘symbols’; j
propagating ones (i.e., twins) and k—j nonpropagating ones, for some 0<j<k.

Let (¢, x) be a PVP. The application of a production C - u to a nonpropagating
occurrence of C consists of replacing y by x —¢(C)+ ¢(u). A production A- yDz
is applied to a propagating occurrence of A (represented by a twin [A, B]) by
replacing ¢ with ¢ —¢([A, B])+¢([D, B]) and by replacing x with y +¢(yz). The
vector ¢ thus keeps track of all the propagating occurrences, whereas y keeps track
of all nonpropagating occurrences.

Formally, let (¢, x) be a PVP. Let [A|, B\],...,[A;, Bi]Je ¥ X X forsome 0<j<k
such that ¢([A,, B,]...[A;, B]])<¢, and let Cjy,...,CieX such that
Y(Civy... C)<x. Let A;»yDiz;e P, where D,e X and y;, z;€ 3*, forall 1si<},
and let C;> u;€ P for j+1<i<k Then (¢, x) directly derives (¢, n), where

(&n)=(¢ “‘//([Al, B\]... [Aj, Bj])+ l//([Dn, Bl] o [D_ia B.i]),
X~ ‘IJ(CjH L COHY(yy . YViZy oo o Ziljpy oo ug));
this is denoted by (¢, x) =g« (& n). The reflexive and transitive closure =§, and
PVP k-derivations are defined accordingly.

Given the k-derivation x,, ..., x,4,_,, it is easy to see that w(x,),..., w(x,4,_,) is
a PVP k-derivation. We then eliminate duplicates; if 7(x,) = 7(x,) forsome t< [, <
L,<t+1-1, then we delete m(x;,),..., m(x,). This is done repeatedly until there
are no more duplicate PVPs. We obtain the PVP k-derivation &’

”(xl) = (§h "h), (§2a 772)’ cety (fs—la ﬂs—n), (.Esa T)s) = W(xt+l—l)

of length <[l —1.

We now proceed to return from PVP k-derivations to k-derivations (of words).
This is done by constructing the k-derivation such that (i) the order of the derived
propagating symbols in the last word of the new k-derivation is the same as that
in the original k-derivation, and (ii) the root words of the original and the new
k-derivation are identical.

Manipulating derivation forests by scheduling techniques 105

Let (¢, m1), ..., (&, m,) be a PVP k-derivation as above. We inductively construct
a k-derivation x, =y,,..., y, such that
(i) if By, ..., B;is the sequence of the propagating symbols in x,.,_,, then there

are exactly j marked symbols in y; such that the mth marked symbol A,, is marked
with B,, (from left to right) for l=m =<,

(ii) ¢([Ay, By]...[Am, B =&,

(iii) if E,,..., E, are all the unmarked occurrences in y;, then ¢(E, ... E,)=n,.

Basis step: Let y1 =X, and mark the mth propagating symbol with B,,, the mth
propagating symbol from x,,,_,. Itis easy to see that conditions (i)-(iii) hold fori=1.

Induction step: We construct y,,, from y; and from the productions applied while
deriving (&iv1, Mi+1) from"(§,~, n;). If a production was applied to a symbol E in 7;
(i.e., to an unmarked symbol), then we apply that production to some unmarked
occurrence of E in y;.

Each occurrence of a twin [A, B] in ¢ corresponds to an occurrence of a symbol
A in y; that is marked with B, by (ii). Let A—> uCv be the production that is applied
to [A, B] such that [C, B] is the twin that is contributed to ¢,,. Then we apply the
production A - uCv to the above occurrence of A in y; and we mark the derived
occurrence of C with B. Again it is easy to see that conditions (i)-(iii) hold.

Observe that all twins in & are of the form [B, B]. It thus follows from (i) that
the sequence of marked symbols in y; is exactly B, ... B; (which is the sequence of
propagating symbols in x,;;_,). We obtain from (iii) that the Parikh vector of the
unmarked symbols in y; is 7n,,,. Since y,=x,, the k-derivation y,,...,y is
equipropagating to %, and it is thus the required k-derivation 9. Since 9 is of
length <I—1, the lemma follows. [

We obtain from Lemma 4.6 the NP-completeness of UXM.

4.7. Theorem (UXM-problem). Let G=(2, P, S, A) be a fixed CFG. It is then NP-
complete for inputs k=2 and we A* to decide whether Sk SE W

Proof. 1t was shown in [12] that the UXM-problem is NP-hard. On the other hand,
by Lemma 4.6 and Theorem 3.7, there is a k-derivation of length |w|I of w from
S* such that each sentential form in that k-derivation is of length <d. Since I and
d are both polynomial in k and |w]|, it follows that the UXM-problem is in NP. O

We conclude this section by proving that the membership problem is polynomial
in the value of k if G and w are fixed and only k is variable. Observe that now w
may be arbitrary but fixed. We do not know whether this problem is polynomial in
the size of k since k can be encoded in binary notation. This result contrasts Theorem
4.7, where it was proven that membership is NP-complete for drbltrary words w if
both k and w are variables of the problem.

4.8. Theorem. Let G be a fixed CFG, and let w be a fixed word. Let k=2. Then it is
decidable in time polynomial in k whether S =g, w.

106 J. Gonczarowski, M. K. Warmuth

Proof. Let G=(3, P, S, A), and let w in A* =a,...a. We shall construct from
G and w a constant grammar G= <Z P S d). G is obtamed from G as follows.
We perform the standard regular intersection construction (see, e.g., [13]) with the
set of states {0,...,|w|}, where 0 is the initial state and |w| is the final state; a
transition is made from i — 1 to i if the ith symbol of w was encountered. We encode
the states in the nonterminal symbols of the grammar; an occurrence of a symbol

[i, A, j] indicates that it intends to derive the (i+ 1)st through the jth symbols of w.
It thus follows that S* =i w if and only if there are indices iy, iy,..., i,
0— 10\ ,l == lk-—ls lk —IWI, SUCh thdt

Lio, S, 01] .. -,[ik—h S, ik]?[oa a,, 1]...[|w|-1, A|wi, [w(].

Let H be the CFG obtained from G by replacing every [i — 1, a;, i]in the right-hand

side of a production by the empty word. Then, obviously,
S*==w if and only if [i, S, i,]...[ix_y, S, ir] = A.
G,k H.k

Note that the set of choices for the indices iy,..., i is of size polynomial in k;
each position of w (between 1 and |w|) gets assigned to one of the start symbols
[i-1, S, i;], indicating that the symbol in this position of w is derived from that start
symbol. Since there are k start symbols, we get that the total number of possibilities
to assign the positions of w to start symbols is bounded by k!,

It thus remains to be shown that it can be determined in time polynomial in the
value of k whether

[i(h S’ 'l] e [ik—h S7 'k] = A.
H. k

This follows, however, from Theorem 4.4 (see Remark 4.5). [

S. Membership for nonpropagating grammars

In this section we shall develop a polynomial dynamic programming algorithm
that solves the membership problem for k-languages, where k is fixed. We shall
also see that the parsing problem is polynomial if, in addition, also the grammar is
fixed. This algorithm generalizes results from [12], where parsing algorithms were
presented which heavily depend on the assumption that the grammar is propagating.

The main combinatorial step is to show that, for each k-derivation of a word w
from a word x, there is a k-derivation forest, the height of which is polynomially
bounded in the size of the grammar and in the length of the word. A difficulty is
the lack of propagating normal forms for k-parallel rewriting and of normal forms
which bound Maxr(G). This is solved by Earley-style algorithms [8, 11]. Our
algorithm will be similar to the Earley-style algorithm outlined in [12]. The algorithm
of [12] requires no bound on Maxr(G). It requires, however, that the grammar is
propagating; one of the dynamic programming parameters is the number of nodes

Manipulating derivation forests by scheduling techniques 107

in a derivation subforest; this parameter may grow to exponential size if the grammar
has erasing rules. As will be seen later on, this parameter can be replaced by the
number of nodes modulo k, whenever the number of nodes exceeds a certain
polynomial bound.

The polynomial k-derivation tree-height bounds from [11,12] hold only for
propagating grammars. We proceed to develop a polynomial height bound for the
nonpropagating case applying the (k+1)-median to k-schedules. (The algorithm,
however, will use the k-median.) Theorem 5.1 is the restriction to forests of [7,
Theorem 3.1]. Corollary 5.2 gives the k+1 version, which follows readily.

5.1. Theorem ([7]). Let F be a forest, and let o be a k-schedule for High,(F). Then
there is a k-schedule o' for the whole forest F such that
(1) if p(o)=|Low(F)|, then o' is at most as long as o,

(2) if p(o)<|Low,(F)|, then o' may have idle periods only in its last slot. Hence,
p(o)=—|F| mod k.

5.2. Corollary. Let F be a forest and let o be a k-schedule for High, . ,(F). Then there
exists a k-schedule o' for the whole forest F such that

(1) if p(o)=|Low,(F)|, then o' is at most as long as o,

(2) if p(0) <|Lowy,(F)|, then o' may have idle periods only in its last slot. Hence,
p(o)=—|F| mod k.

Proof. We first construct a k-schedule o for High,(F) from o. For this purpose,
we remove all nodes from o which are in High,,,(F) but not in High,(F). Since
our definition of schedules requires that there are no empty slots, we have yet to
‘squeeze’ the resulting sequence of slots. To obtain the valid schedule o, we repeatedly
find the first empty slot; then, all the nodes appearing after that slot are scheduled
one slot earlier. Let r be the number of nodes which were removed from o to obtain
0. Obviously,

"=IHighk+x(F)|—|Highk(F)|=|L0Wk(F)I"|L0Wk+1(F)|,

and p(ag)<sp(o)+r

Clearly, & is at most as long as o, and it is a schedule of High.(F). Now, by
Theorem 5.1, there exists a k-schedule o’ of F such that, if o’ is longer than g, then
o' has idle periods only in its last slot. We proceed to prove that o' satisfies the
corollary, by performing a case analysis.

Case A: Let p(o)<|Low,.,(F)|. It follows that p(c)+r<|Low,.,(F)|+r, and,
therefore, p(d) <|Low,(F)|. Now, Theorem 5.1(2) with respect to ¢ and ¢’ guaran-
tees that o’ may have idle periods only in its last slot. Hence, Corollary 5.2(2) holds
for Case A.

Case B: Let p(o)=|Low,.,(F)| and assume on the contrary that ¢’ is longer
than o. Since & is at most as long as o, o’ is also longer than ¢. It follows from
Theorem 5.1(2) that o' has idle periods only in its last slot. The total number of

108 J. Gonczarowski, M.K. Warmuth

nodes in F is thus at least k(/'—1)+1, where I’ is the length of ¢'. On the other
hand, o contains all nodes of High,,,(F). From this we obtain that the total number
of nodes is at most

kl=p(o)+|Lowi, (F)| < ki,

where [is the length of ¢. Since I<['—1, we arrive at a contradiction. Hence, o'
is at most as long as o, and the corollary holds. [

The following theorem is the prerequisite for a polynomial dynamic programming
membership algorithm; it guarantees the existence of a k-derivation forest of
bounded height.

5.3. Theorem. Let G=(3, P, S, A) be a CFG, and let k=2. Let we U, (G). Then
there is a derivation tree T of w from S with p(Bare(T)) =k —1 such that

height(T) < h = k|w|3** 2# I 2((|w]|+ 1)#Z + 1) (k+|w| + #3).

Proof. Let T' be a derivation tree of w from S with p(Bare(S))=k—1. Such a
derivation tree exists by Lemma 2.6(2). If height(T') < I;, then the theorem holds
for T=T'. Otherwise, we shall obtain from T’ the required derivation tree T. We
look at an optimal schedule ¢’ of Bare(T’). The construction is performed in two
stages. A coarse outline of the proof follows. '

First, we look at all those initial slots of ¢’ for which the median and the number
of nodes in the low forest do not exceed certain polynomial bounds. It will be
shown that each such ‘constrained’ derivation step (i.e., slot) can be characterized
by a triplet (v, m, ¢), where v is the root word of the (k+1)-high forest, m is the
(k+1)-median, and c is the size of the (k+1)-low forest. There is at most a
polynomial number of these triplets, because all components of a triplet are poly-
nomially bounded. Given the sequence of triplets that corresponds to the constrained
derivation steps of the derivation of T', we can eliminate sequences of triplets which
begin and end at the same triplet. Returning from triplets to derivations, we obtain
a derivation that is equivalent to T and which has the same initial triplet and thus
the same number of idle periods. Moreover, the constrained initial part of the
derivation is of polynomial length.

The second stage (when either the median or the low forest size becomes too
large) uses the shrinking technique of Lemma 3.4 to reduce the size of derivation
forests. If the (k+1)-median is bounded and the size of the (k+1)-forest is large
(Case A), then first shrinking and then unshrinking to the proper modulo class of
the number of nodes yields the height bound. In Case B, where the (k +1)-median
is large, the shrinking technique is used to produce k trees of polynomial heights
such that the heights are almost equal. The resulting forest will be shown to have
the same number of idle periods as the original one, i.e., zero, which will conclude
the proof of the theorem.

Manipulating derivation forests by scheduling techniques 109

As in LLemma 3.4, we distinguish between nonpropagating, propagating, and
growing nodes. We extend the alphabet to the alphabet ='; each nonpropagating
symbol A is represented by A itself, whereas each propagating symbol is represented
by a compound symbol [i, A, j]; this indicates that A derives the subword of w from
the ith through the jth symbol.

Let H be the grammar obtained from G using the alphabet =. Note that H can
be easily obtained from G using the standard regular intersection technique (see, -
e.g., [14]). Let U’ be the derivation tree obtained from T’ by replacing every
propagating symbol with the corresponding compound symbol. Obviously,

p(Bare(U’')) = p(Bare(T')) =k — 1.

We say that two derivation forests F and F' are equivalent if their roots are labelled
identically, if they derive the same word, and if p(Bare(F)) = p(Bare(F")).

We will construct a derivation tree U in H that is equivalent to U’, of height
<h. Upon replacing in U each compound symbol by the original nonterminal
symbol, the required derivation tree T is obtained.

A more detailed outline of the construction of U follows. The construction of U
will consist of two stages; in Stage I, we will construct an equivalent derivation tree
U with the following property. Let ¢ be a highest-level-first schedule for Bare(0).
Let (AJ,~ be the subforest of U which contains the nodes scheduled in & at slot i or
later, as well as the leaves of U. We call (AJ,- the i-th subforest of U. Let f be the first
slot of & such that

|Lowss,(Bare(Uy)| = (k= 1)(k+ #Z +|w)#3Z or . (Bare(U,))> (|w|+1)#3.

Then the forest é, obtained by deleting from U all the non-root nodes of 0f, will
satisfy '

height(E) = hg < ((|w]*#)" ' = 1)((|w]+)#Z + 1)(k— 1)(k+|w|+ #3Z)#3.

[n Stage II, we shall show that for Uf there is an equivalent derivation forest F
such that

height(F) < hp =max(k(k+#X)#2, (|w|+ k+#2)#2).

Let U be the result of replacing LA!,« by F in U. Then, U is equivalent to 0, and its
~ height is bounded by hg + he. The theorem then follows from the inequality

he +he < (W) (W] + 1)#S +1)k(k+|w|+#2)#3 = h,

We now present the detailed proof. To show the height bound for Stage I, let o’
be an HLF schedule for Bare(U’), and let U} denote the ith subforest of U’ with
respect to o'. Let f' be the first slot of o’ such that

|Low, . (Bare(U}))|=(k—1)(k+#Z +|w])#ZX or
i (Bare(Uj)) > (Jw|+1)# 3.
We associate with each U}, 1 <i<f’, a triplet

(word(High,,(Bare(U1))), ui+(Bare(U?)), [Low,. (Bare(U7))|),

110 J. Gonczarowski, M.K. Warmuth

where word(U?) designates the word that is formed by the labellings of the roots
of U;. The number of triplets is bounded by hg, because (i) there are at most
(Iw*#X) "' —1 possible words over = of length up to k, and, by the definition of
S’ (ii) the median is bounded by (|w|+ 1)# X, and (iii) the low-forest size is bounded
by (k—1)(k+#X +|w|)#X —1.

We construct an equivalent derivation tree U for U’ with the property that all
triplets are distinct. Assume that there is, in U’, a triplet that occurs twice, say for
Ui, and Uj, i, <i,. Note that i, # 1, because there is only a single node in the first
slot of o', whereas all other slots contain k nodes. The high forests
High,,,(Bare(U})) and High,,(Bare(U},)) have the same root word. Moreover,
the jth component trees of Highy.,(U;) and of High.,(U},) yield the same subword
of w. (This is guaranteed by the extended alphabet =.) The low forests, however,
do not necessarily have identical root words. Let thus 01‘, be the forest obtained
from U} (and from U},) as follows.

Let C;, be the component tree of U; whose bare tree is the jth component of
High,,(Bare(U})), and let C;, be defined similarly with respect to
High, ., (Bare(U},)). Then l},-, is the result of replacing C;, by C;, in Uj, for all
1 <j= # High,,(Bare(U})).

Since C;, and Cj, have the same root labellings for all j, it follows that U,-l has
the same root word as Uj. Moreover, the use of triplets guarantees that C;, and
C;, derive the same words for all j. To prove that U,-l is equivalent to U] it remains,
therefore, to be shown that p(U.',) =0.

We observe that

p(Highy.,(Bare(U?,))) <|Low,..,(Bare(UL))|,)

because p(Bare(U;,)) = 0. On the other hand, the equality of the triplets for Ui, and
Ui, implies that

|Low, (Bare(U}))| = |Low,.,(Bare(U},))| and

pi(Bare(U})) = i (Bare(UL)). (2,3)
It follows from (3) that

High,.(Bare(U,)) = High,,(Bare(U})) and

Low,.,(Bare(Ui.)) = Low.(Bare(U})). (4)
Combining (1), (2), and (4), we obtain

p(High, (Bare(U,))) < |Low,.,(Bare(U,))|.
We can now apply Corollary 5.2(2), stating that

p(Bare(0,.)) = —|Bare(Ui.)| mod k.
But, by (2) and (4),

|Bare(LA],»l)l =|Bare(U},)| = 0 mod k,

Manipulating derivation forests by scheduling techniques 111

and, thus, p(Bare(lAJil))=0. It follows that LAJ;l is a k-derivation forest which is
equivalent to U|,.

We can thus cut and paste’ U’, replacing the forest U; by U,I, obtaining a
" derivation forest of w from S with k—1 idle periods. We repeat this process, until
there are no more repeating triplets. Let U be the resulting forest. Obviously, U is
equnvalent to U'. Let f be defined for U analogously to the definition off’ for U'.
Let E be the tree obtained from U by deleting all the non-root nodes of Uf Then
helght(E) < hg.

Stage II is to show that for F= Uf there is an equivalent derivation forest F
whose height is bounded by hr. We distinguish between two cases.

Case A: Let '

pk+.(Bare(ﬁ))S(|w+ 1)#% and ILowkH(Bare(I:"))l =(k—1)(k+#X+|w|)#2.

To construct F, we eliminate shrinks from every component tree ’f“, of F whose bare
tree is in Hith,(Bare(I:")) such that the height of each resulting tree is at least
(lw+1)#2 = /.LH,(Bare(ﬁ)), but at most (|w|+2)# X —1. A similar shrinking pro-
cess is shown in detail in Lemma 3.4. Call the resulting trees T,. We re-insert shrinks
into each tree T;, obtaining a new tree T; such that |Bare(T;)| =|Bare(f})| mod k.
(As in Lemma 3.4, this is done in two phases: first, we guarantee that each symbol
which occurred in "i', occurs also in T;; then, we insert up to k — 1 shrinks, until the
bare tree is in the correct modulo class.) For all those trees ’IA", whose bare trees are
in LowkH(Bare(ﬁ)) we let T, = f",
It follows that

height(T,) < (jw|+2)# % -1+ (#Z -1N#Z +(k—-1)#2 < (#3+k+|w|)#2.
Replacing each tree f in F by T; we obtain a forest F such that
height(F)< (#X + k+|w|)#2X < h.

Obviously, eliminating and re-inserting shrinks preserves the roots, as well as those
leaves which are not labelled with A. Hence, F and F are forests of the same
derivation.

To complete Case A, it thus remains to be proven that p(F) =p(ﬁ) =0, i.e., that
F is also a k-derivation forest. We first note that an HLF schedule contributes at
most k —1 idle periods for each height (including height zero). Since

height(Bare(F)) < (#X +k+|w|)#2X -1,
it follows that
p(Highy,(Bare(F)))<(k—1)(#X+k+|w))#2.
On the other hand, by the assumption of Case A,
|Low,.(Bare(F))|= (k—1)(#Z + k+|w|)#Z.
Hence, p(High.,(Bare(F))) <|Low,.(Bare(F))|.

112 J. Gonczarowski, M. K. Warmuth

Corollary 5.2(2) now yields the existence of a k-schedule of Bare(F) that may
have idle periods only in its last slot. Since |Bare(1:“)| =0 mod k and our construction
has preserved the modulo class of each bare tree, it follows that |Bare(F)| =0 mod k.
Hence, there are no idle periods in the last slot of the schedule of Bare(F), and we
conclude that F is a k-derivation forest that is equivalent to F.

Case B: Let u. (Bare(F))> (|w|+ 1)#ZX. This is the part of the proof that needs
the (k+1)-median rather than the k-median; the construction relies on the fact that
there are k+ 1 *high’ component trees. We first shrink every tree 7‘”, of F the height
of which exceeds (|w|+2)# X, until its height is between (|w|+1)#3 +1 and (Jw|+
2)# 2. Then we re-insert shrinks into exactly k+1 of those trees, until the height
of each new tree is at least (k—1)(k+#X)#ZX and at most max((k—1)(k+#3)+
I, |w|+2)# 2. This can be done because every tree of height >(|w|+1)#ZX contains
at least one shrink (see the proof of Lemma 3.4).

Finally, we insert shrinks to create the tree T; such that each bare tree is of the
same modulo class as the original T;; in addition, we also require the set of symbols
occurring in T; to be the same as in T At most #% — 1+ k—1 shrinks have to be
inserted for this purpose (see Lemma 3.4). Therefore,

height(T;) < max(k(k+#X),|w|+ k+#3)#3 = h,.

Moreover, the k+1 hlghest trees differ in height by at most (k+ #Z)#Z and they
all are above ;LH,(Bare(F))

Let F be the forest obtained replacing each T,~ by T;. Since height(F) < hg, it
remains to show that F is a k-derivation forest, i.e., that p(F)=0. We use the
following two claims. The first one is a consequence of [7, Lemma 3.1].

Claim 1. Let B be a forest. If |B|=0mod k and B has at least k trees of height
=height(B) -1, then p(B) =0.

Proof of Claim. The proof works by induction on the size of | B|. The claim trivially
holds if height(B) = 0. Otherwise, let B’ be a subforest obtained from B by removing
the k highest roots. Obviously, p(B’) = p(B). Then it is easy to see that either
height(B’') =0, in which case we are done, or else B’ contains at least k trees of
height =height(B’)—1. Since |B’'|<|B|, the claim follows from the induction
hypothesis. [J

Claim 2. Let B be a forest. If |B|=0mod k, and if
Y height(T)= k height(B),

TinB
then p(B) =0.

Proof of Claim. We operate again by induction on |B|. We first note that B has at
least k roots; otherwise, the sum of the component tree heights would be less than
k fixed height(B). If B has at least k trees of height height(B), then p(B)=0. This
follows from Claim 1. Let thus B’ be a subforest obtained from B by removing k
highest roots. Clearly, height(B’) =height(B)—1. The sum Y ,, , height(T)

Manipulating derivation forests by scheduling techniques 113

decreases at most by k when the k roots are removed from B (note that some trees
might split into several trees). Hence,
Y height(T’) = k height(B) — k = k(height(B) — 1) = k height(B’).
T inB

The claim thus follows from the induction hypothesis since |B'|<|B|. O

We use Claim 2 to show that p(Bare(F))=0. Obviously, the highest tree of
Bare(F) has height height(Bare(F)). From the construction of F we know that the
next k—1 highest trees have height =height(F)—(k+#2X)#2 and that tree k+1
has height =(k—1)(k+#2X)#2. Hence,

X height(T)> height(Bare(F))+ (k — 1)(height(Bare(F)) — (k + #3)#X3)
e +(k+#Z)(k—-1)#2%
=k height(Bare(F)),
and, by Claim 2, p(Bare(F)) =0, which completes also Case B. [

Having obtained a polynomial bound on the height of a derivation forest we can
develop a dynamic programming membership algorithm for arbitrary grammars. In
the algorithm we will again use k-medians, k-high forests, and k-low forests.

We define frames, as introduced in [12].

5.4. Definition. Let G be the CFG (X, P, S,4), and let w=a,...a,, where
a,...,a,€4.

A frame R (of w) is quintuple (A, I, r, h, ¢) such that

e Ac X is the root of R; ‘

e Il<sl/andl-1<r=n,

e there is a derivation tree T of a,... a, from A in G such that its bare tree has
height h and ¢ nodes. If the derivation tree is of height zero, i.e., Ais aterminal
symbol, then ¢=0 and h=—1.

A tree T as above is called a frame tree for R.

The height of R is height(R) = h; the size |R| of R is c. An ordered set & of
frames is called a frame collection. height(%2), the height of R, is the maximum of
the frame heights in R. The size || of & is the sum of the sizes of the frames in Z.

If F is a forest such that the ith tree in F is a frame tree for the ith frame in R
for 1<i<#F=#®, then F is called a frame forest of R.

5.5. Example. The forest of Fig. 1 is a frame forest for the frame collection
{(A’ 1’ 6, 2’ 3)’ (C’ 7’ 10’ 1, 2>}'

The notions of k-median, k-high collection (k-high forest) and k-low collection
(k-low forest) carry over from forests to frame collections in the obvious way. In
particular,

p(R) =min{ p(Bare(F)): F is a frame forest of R}.

114 J. Gonczarowski, M.K. Warmuth

To recur from a frame to its child frames (i.e., from a forest to the subtrees at the
children of its roots) we need the following definition.

5.6. Definition. Let R=(A, I, r, h, c)be aframe ofaword wandlet Z ={R,, ..., R;}
be a frame collection of w, where R, =(A,, I, i, h;, ¢;) for all 1 <i<j. We say that
AR is a child collection of R if

* A> A, ... AeP;

e l=Il,r,=r,and [;=r,_,+1 forall 2<i<j,

* h=1+max{h,,..., h};

e c=1+Y_, c. .
A child collection of a frame collection & is obtained by choosing a child collection
for each of the frames in & and by taking their union.

The following lemmas from [12] provide the recurrence rules for the dynamic
programming algorithm presented there.

5.7. Lemma ([12, Corollary 3.10]). Let R be a frame collection. Then

p(@)={P(Highk(%»-lmwk(%)l if p(Highy (%)) > |Low, ()],
—|%| mod k otherwise.

5.8. Lemma ([12, Lemma 3.11]). Let j be the number of frames in a frame collection
92, where 2 = High, (2). Then

0 if2isempty,

P(2)=1 k—j+min{p(R'): R’ is a child collection of 2}
otherwise.

Note that the possible number of symbols in a frame is bounded by the size of
the alphabet, the positions are bounded by the length of the word, and, by Theorem
5.3, the height is bounded by h. The problem is that the number of nodes may get
exponentially large. This can, however, be overcome. To determine the number of
idle periods of a frame collection, we only need the number of idle periods of its
k-high collection and the number of nodes in its k-low collection (Lemma 5.7).
Moreover, since the number of idle periods for an HLF schedule is at most k—1
times the height, it follows that we have to keep track only of the modulo class of
the number of nodes if it exceeds I;(k— 1).

We thus modify the size component ¢ of a frame to be either an integer in the
range 0<c =< l;(k —1) or a modulo class; we represent the class i mod k by [i]. The
size of a frame collection is defined accordingly. It is easy to see that Lemmas 5.7
and 5.8 hold for this modified definition of frames.

In the sequel we have to add integers to integers, integers to modulo classes, or
modulo classes to modulo classes. For this purpose, we define the operation @, as

Manipulating derivation forests by scheduling techniques 115

follows:
- {H—j ifi+j<h(k—1),
i®j=9_. :
L[i+j] otherwise;
[[1®j=i®[jl=[i+j] and [{]®[jl=[i+]j] forall0=<i j<k-1.

If Maxr(G) were constant (which is clearly the case for a fixed G), we could, at
this point, have formulated a polynomial dynamic programming membership
algorithm which first finds all the frames and then computes the number of idle
periods by growing height. This was done in [12] for propagating grammars. Such
an algorithm can also be*used to extract the parse tree in polynomial time.

Since it is not known whether there is a normal form, where Maxr(G) is bounded,
we introduce structures called ‘items’, which are the generalization of Earley’s
‘dotted items’ to frames. An item represents a ‘partially complete frame’, as follows.

An item R is an octuple of the form [A-> B, ... B,,i,1,r, hyc, &, u], where

e A> B,...B,, is the production used at the ‘root’ of the frame;

o irepresents the dot in Earley’s dotted items [8]; it indicates that we have already
processed frames for By,..., B, i.e., there exists a frame collection & with
#9 = i, the jth frame in & has B as its root for 1<j<i R covers A, ... A,,
the height of & is h, c is the size of the k-low collection of R, High,(R) = ¥,
and w,(R) = u.

If i=m, then the item is called complete; it then corresponds to the frame
Q=(A,Lr h+1,c), where ¢'=1+c+|¥| (counting 1 for the node at the root, c
for the nodes in the k-low collection, and |] for the nodes in the k-high collection).
We denote this Q by frame(R), where R is the complete item. In consistency with
frames we denote the height of an item R by height(R) and its size by |R].

We observe that, similarly as for frames, the total number of items is also
polynomial in the size of G and in |w|. Based on the recurrences of Lemmas 5.7
and 5.8, we can now formulate the algorithm. Its acceptance condition is expressed
by the following lemma (this is the frame version of Lemma 2.6(2); see [12, Lemma
3.7]).

5.9. Lemma ([12, Lemma 3.7]). Let G=(Z, P, S, A) be a CFG. A word w is in U,(G)
if and only if there exists a frame R =(S, 1,|w|, h, ¢), for some h and ¢ such that
p(R)=k—1.

The algorithm follows.

Algorithm UM;

Given: an integer k.

Input: a CFG G=(Z, P, A,,A), where 3={A,,...,A,x}, and a word weA*,
w=A,...Ap. -

Output: accert if we Uy (G), otherwise REJECT.

116 J. Gonczarowski, M.K. Warmuth

begin
comment test whether w is directly derived from S;
if A,> w then AccEepT;
comment construct all the frames for the leaves and erasing nodes;
for i:=1 to |w| do
begin
(A, i, i, —1,0) is a frame and p((A,,, i, i, —1, 0)) = 0;
for all A>A in P do (A,ii-1,0,1) is a frame and p((A,i i—1,0,1))=k— 1;
end;
comment construct all the items of height h;
for h'=0to h do
for all A-» B,...B,, in P do
begin
comment construct all the items of height h, with i =1;
for I:=1 to |w| do
for all frames Q:=(B,,, r,h—1, ') do

begin
if h =1 then begin
H={} c=c}
end else begin
H'={Q}; c:=0;
end;

R=[A->B,...B,,1,1r h c %, 0] is an item;
if m=1 then frame(R) is a frame;
end; '
end;
comment we construct all the items of height h with i =2;
for i'=2 to m do
for all items [A> B,...B,,, i—1, L r', h', ', &', j'] with h'<h do
for all frames Q:=(B;, r'+1, r, h”, ¢’) with h =max(h’, h") do
begin
j=max(u(#'u{Q}),j");
7= High, (%' v {Q});
c:=c'+|(%'u{Q}h - #l;
R=[A->B,...B,, il r h c ¥, j]is an item;
if i = m then frame(R) is a frame;
end;
comment compute the number of idle periods for all collections of up to k—1
frames, by increasing height;
P H=0;
for h:i=1 to h do
for all frame collections ¥ ={F,,..., F,} of height h with r<k—1 do
begin

Manipulating derivation forests by scheduling techniques 117

comment we find the number of idle periods for a frame collection & consisting
of r<k—1 frames, by computing the number of idle periods for all
the collections of r items which correspond to the frames, and by
taking the minimum;
q = o0,
for all collections of complete items &# ={R,, ..., R,} such that F, =frame(R,)
do
begin
let Ri;=[Ci~> v, |vl, L, r, hi, c;, 24, ji];
2 = High(U'-, 2,);
&= Low, (Ui 2));
comment since height(2)=<h—1, we can recur on p(2);
if p(2)<(k—1)h then begin
comment lowc is the size of the low collection of the child collection of
lowe:=|Low,(R,)|®" - -®@|Lowi(R,)|®|Z];
if lowc is not a modulo class and p(2)=lowc
then g :=min(q, p(2)—lowc)
else ¢ := min(q, —lowcmod k);
end;
end;
comment fix the number of idle periods for %;
p(F)=k-r+gq;
end;
comment this is the membership test;
for h'=0 to h do '
forall ce{l,...,(k—=1)A[0],...,[k—1]} do
if Q==(A,, 1,|w|, h, ¢) is a frame and p(Q) =k —1 then ACCEPT;
REJECT,
end,

5.10. Theorem. The membership problem for U,(G) is in P, for constant k, even if
the grammar is variable.

Proof. Theorem 5.3 allows us to restrict ourselves to a polynomial height. As pointed
out before, the number of frames and items is polynomial in the size of the grammar
and of the word to be tested. Hence, Algorithm UM runs in polynomial time. [

Algorithm UM can easily be turned into a parsing algorithm if the grammar is
fixed. On the one hand, we have to be able to determine the set of child collections
for any frame. This can obviously be done in polynomial time (see [12, Theorem
3.12]). On the other hand, we can show by using the shrinking technique that for
each parse tree there is an equivalent parse tree of identical height and modulo
class whose number of nodes is polynomial in |w|. We thus arrive at the following
theorem.

118 J. Gonczarowski, M.K. Warmuth

5.11. Theorem. The parsing problem is polynomial for fixed k and fixed arbitrary
grammars Q.

6. Summary

In this paper we have continued and completed the investigation of the complexity
of various open membership problems for unrestricted (i.e., not necessarily adjacent)
k-parallel rewriting that was begun in [12]. Using Scheduling Theory arguments as
well as combinatorial properties of derivations, we have obtained polynomial bounds
on derivations as prerequisites to the complexity results. Table 1 summarizes the
bounds and the complexity results obtained in this paper, as well as earlier results
from [12] (these are marked by asterisks). As defined in Section 3,

d=k(w|+#X + k)#3Z(Maxr(G)+1).

Table 1
Fixed Variable Complexity Bound
k G, w P Forest height:
kw22 S92 (| wl+ D)#Z + 1) (k+|w|+#X)
G k, w NP-complete Derivation length: |w|(d + 1)*=(|w|+1)*Z";
(*NP-hard) Derivation width: d
G k, unary w P Derivation length: (d +1)*%; width: d
w k G *NP-hard -
G, w k P Reduces to variable (k, unary w)
References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley, Reading, MA, 1974).

[2] R.V. Book, On the complexity of formal grammars, Acta Inform. 9 (1978) 171-182.

[3] J. Bruno, Deterministic and stochastic scheduling problems with treelike precedence constraints,
Proc. NATO Conference, Durham, England 1981.

[4] C. Beeri and E. Shamir, Checking stacks and context-free programmed grammars accept P-complete
languages, Proc. 2nd Coll. on Automata, Languages and Programming, Lecture Notes in Computer
Science 14 (Springer, Berlin, 1974) 27-33.

[5] E. Dahlhaus and H. Gaifman, Concerning two-adjacent context-free languages, Theoret. Comput.
Sci. 41 (1985) 169-184.

[6] D. Dolev and M.K. Warmuth, Scheduling flat graphs, SIAM J. Comput. 14 (1985) 638-657.

[7] D. Dolev and M.K. Warmuth, Profile scheduling of opposing forests and level orders, SIAM J.
Algebraic Discrete Methods 6 (1985) 665-687.

[8] J. Earley, An efficient context-free parsing algorithm, Comm. ACM 13 (1970) 94-102.

[9] S.A. Greibach and J.E. Hopcroft, Scattered context grammars, J. Comput. System Sci. 3 (1969)
233-247. .

[10] J. Gonczarowski, H.C.M. Kleijn and G. Rozenberg, Closure properties of selective substitution
grammars, Part I and I1, Internat. J. Comput. Math. 14 (1983) 19-42 and 109-135.

[11] J. Gonczarowski and E. Shamir, Pattern selector grammars and several parsing algorithms in the
context-free style, J. Comput. System Sci., 30 (1985) 249-273.

Manipulating derivation forests by scheduling techniques 119

[12] J. Gonczarowski and M.K. Warmuth, Applications of scheduling theory to formal language theory,
Theoret. Comput. Sci. 37 (1985) 217-243.

[13] M.A. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Reading, MA, 1978).

[14] J.E. Hopcroftand J.D. Ullman, Formal Languages and Their Relation to Automata (Addison-Wesley,
Reading, MA, 1969).

[15] N.C. Hu, Parallel sequencing and assembly line problems, Oper. Res. 9(6) (1961) 841-848.

[16] H.C.M. Kleijn and G. Rozenberg, Context-free like restrictions on selective rewriting, Theoret.
Comput. Sci. 16 (1981) 237-269.

[17] H.C.M. Kleijn and G. Rozenberg, On the generative power of regular pattern grammars, Acta
Inform. 20 (1983) 391-411.

[18] J. Opatrny and K. Culik, II, Time complexity of recognition and parsing of EOL Languages, in:
A. Lindenmayer and G. Rozenberg, eds., Automata, Languages, Development (North-Holland,
Amsterdam, 1976) 243-250.

[19] M. Penttonen, One-sided and two-sided context in formal grammars, Inform. and Control 25 (1974)
371-392.

[20] G. Rozenberg, Selective substitution grammars, Part 1, Elektron. Informationsverarb. Kybernet. 13
(1977) 455-463.

[21] G. Rozenberg and A. Salomaa, The Mathematical Theory of L-Systems (Academic Press, New York,
1980).

[22] A. Salomaa, Formal Languages (Academic Press, New York, 1973).

[23] L.H. Sudborough, The time and tape complexity of developmental languages, Proc. 4th Internat.
Coll. on Automata, Languages and Programming, Lecture Notes in Computer Science 52 (Springer,
Berlin, 1977) 509-523.

[24] J. van Leeuwen, The membership question for ETOL languages is polynomially complete, Inform.
Process. Lett. 3 (1975) 138-143.

[25] D.H. Younger, Recognition and parsing of context-free languages in time n’, Inform. and Control
10 (1967) 189-208.

