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Abstract One of the main concepts in quantum physics is a density matrix, which is a
symmetric positive definite matrix of trace one. Finite probability distributions can be seen
as a special case when the density matrix is restricted to be diagonal.

We develop a probability calculus based on these more general distributions that in-
cludes definitions of joints, conditionals and formulas that relate these, including analogs
of the Theorem of Total Probability and various Bayes rules for the calculation of posterior
density matrices. The resulting calculus parallels the familiar “conventional” probability
calculus and always retains the latter as a special case when all matrices are diagonal. We
motivate both the conventional and the generalized Bayes rule with a minimum relative en-
tropy principle, where the Kullbach-Leibler version gives the conventional Bayes rule and
Umegaki’s quantum relative entropy the new Bayes rule for density matrices.

Whereas the conventional Bayesian methods maintain uncertainty about which model
has the highest data likelihood, the generalization maintains uncertainty about which unit
direction has the largest variance. Surprisingly the bounds also generalize: as in the con-
ventional setting we upper bound the negative log likelihood of the data by the negative log
likelihood of the MAP estimator.
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1 Introduction

The main notion of a “mixture state” used in quantum physics is a density matrix. States
are unit vectors u (‖u‖2 = 1). For the sake of simplicity we assume in this paper that the
underlying vector space is R

n (for finite n). Each state u (unit column vector in R
n) is asso-

ciated with a dyad uu� ∈ R
n×n. The dyad uu� may be seen as a one-dimensional projection

matrix which projects any vector onto direction u. These dyads are the elementary events of
a generalized probability space. It is useful to keep the corresponding “conventional” prob-
ability space in mind, which consists of a finite set of size n. The n points are the elementary
events and a probability distribution may be seen as a mixture over the n points, i.e. such
a probability distribution is specified by n real numbers that are bigger than zero and add
to one. In the generalized case there are infinitely many dyads even if the dimension n is
finite.1

Density matrices generalize finite probability distributions. They can be defined as mix-
tures of dyads W = ∑

i ωiwiw
�
i where the mixture coefficients ωi are non-negative and sum

to one. There may be an arbitrary number of components in the mixture. However, any n

dimensional density matrix can be decomposed into a mixture of n orthogonal eigendyads,
one for each eigenvector (see Fig. 1). Mixtures of dyads are always symmetric2 and positive
definite. A density matrix W can be depicted as an ellipse which is an affine transformation
of the unit ball: {Wu : ‖u‖2 = 1} (see Fig. 2). A dyad is a degenerate ellipse with a single
axis in direction ±u that has radius one (Fig. 1). Note that dyads have trace one:

tr(uu�) = tr(u�u) = ‖u‖2
2 = 1.

Therefore, density matrices also have trace one.
A density matrix W assigns generalized probability tr(Wuu�) to each unit vector u and

its associated dyad uu� (see Fig. 2). This probability is independent of how W is expressed
as a mixture and can be rewritten as u�Wu. Note that if the symmetric positive definite
matrix A is viewed as a covariance matrix of a random cost vector c, then u�Au is the
variance of the cost along direction u, i.e. the variance of c · u.

If α = (α1, . . . , αn) is a probability vector, then the n-dimensional matrix diag(α) with
vector α as its diagonal is a density matrix. Note that diag(α) = ∑

i αieie
�
i , where the ei are

the standard basis vectors. Thus conventional probability distributions are special density
matrices where the eigensystem is restricted to be the identity matrix. In this paper we de-
velop a Bayesian style analysis for the case when the eigensystem is allowed to be arbitrary.

Fig. 1 Two different dyad mixtures that lead to the same density matrix: 0.2
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1The machinery for infinite dimensional vector spaces is available. However, in this paper we start with the
simplest finite dimensional setting.
2In quantum physics complex numbers are used instead of reals. In that case “symmetric” is replaced by
“hermitian” and all our formulas hold for that case as well.
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Fig. 2 (Color online) Figure (a) depicts a red ellipse {Wu : ‖u‖2 = 1} for some density matrix W . The green
curve shows part of the unit ball. The blue figure-eight is a plot of the generalized probabilities in direction u,
i.e. tr(Wuu�)u. Figure (b) plots a 3-dimensional density matrix (red ellipsoid) and its associated generalized
probability surface (in blue)

Fig. 3 (Color online) For a set of orthogonal directions ui and a density matrix W , the sum of generalized
probabilities tr(Wuiu

�
i

) over the set is one. Figure (a) shows this for 2-dimensional case: the red ellipse

is a density matrix W , the blue figure-eight is a plot of the generalized probability tr(Wuu�) around the
circle, and for any two orthogonal vectors u1 and u2, tr(Wu1u�

1 ) + tr(Wu2u�
2 ) = 1. Figure (b) shows the

three-dimensional case: for any three orthogonal directions u1, u2 and u3, the probabilities a, b and c of the
three associated dyads sum to one

Perhaps the simplest case to see that something unusual is going on is the uniform density
matrix, i.e. 1

n
times identity I . This density matrix assigns probability 1

n
to every unit vector,

even though there are infinitely many of them. However, note that the sum of generalized
probabilities of any set of n orthogonal dyads is n 1

n
= 1. As a matter of fact for any density

matrix W and any set of n orthogonal directions ui , the total generalized probability is one
(see Fig. 3)

n∑

i=1

tr(Wuiu
�
i ) = tr

(

W
∑

i

uiu
�
i

︸ ︷︷ ︸
I

)

= tr(W ) = 1. (1.1)

This means that while in the conventional case probabilities are additive over the points in
the set, in the generalized case probabilities are additive over orthogonal sets of dyads.

In this paper we use density matrices as generalized priors and develop a unifying
Bayesian probability calculus for density matrices with rules for translating between joints
and conditionals. All formulas retain the conventional case as the special case when the ma-
trices are diagonal. In previous work (Warmuth 2005) we derived a generalized Bayes rule
based on the minimum relative entropy principle, but no satisfactory probabilistic interpre-
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tation was given for this rule. This Bayes rule fits nicely into our new calculus and we can
interpret it using the notion of generalized probability introduced above.

For any fixed orthonormal system ui , one can use the dyads uiu
�
i as elementary events

of a conventional probability space. As already discussed, any density matrix can be seen as
assigning conventional probabilities to these events that sum to one. Thus if the orthonormal
system is fixed, generalized probability space is reduced to conventional probability space
over the vectors in the chosen system. Our approach is fundamentally different in that we
use density matrices to maintain uncertainty over all orthonormal systems. Our conditional
density matrices are part of the probabilistic system specified by a generalized joint prob-
ability distribution. In particular, our conditioning method leads to generalizations of the
theorem of total probability that involve density matrices.

In Tsuda et al. (2005) various on-line learning updates were generalized from vector pa-
rameters to matrix parameters. Following (Kivinen and Warmuth 1997), the updates were
derived by minimizing the loss on the current instance plus a divergence to the last para-
meter. In this paper we use the same method for deriving a Bayes rule for density matrices,
which becomes the foundation of our generalized probability calculus. When the parameters
are probability vectors over the set of models, then the “conventional” Bayes rule can be de-
rived using the relative entropy as the divergence (e.g. Zellner 1998; Kivinen and Warmuth
1999; Singh et al. 2003). Analogously, we now use the quantum relative entropy, introduced
by Umegaki, to derive the generalized Bayes rule.

The new rule uses matrix logarithms and exponentials to avoid the fact that symmetric
positive definite matrices are not closed under the matrix product. The rule is strikingly sim-
ilar to the conventional Bayes rule and retains the latter as a special case when the matrices
are diagonal. Various cancellations occur when the conventional Bayes rule is applied iter-
atively and as we shall see, similar cancellations happen with the new rule (see Sect. 9.2).
The conventional Bayes rule may be seen as a soft maximum calculation and the new rule
as a soft calculation of the eigenvector with the largest eigenvalue (see Figs. 7 and 8). In
Figs. 9 and 10 we plot the projections of posterior onto the eigendirections of the fixed data-
likelihood matrix D(y|M). The projection onto the eigendirection of the largest eigenvalue
is a sigmoid like function.

The mathematics applied in this paper are most commonly used in quantum physics.
For example, the assignment of generalized probabilities tr(Wuu�), can be seen as the
outcome of a quantum measurement of a system in mixture state W being acted upon by a
measurement apparatus described by the dyad uu�. It is tempting to call the new rule the
“quantum Bayes rule”. However, we currently do not have a quantum physical interpretation
of this rule. In particular, the state collapse following a measurement does not explicitly
appear in our calculus, also our Bayes rule can not be described as a unitary evolution of
the prior state. The term “quantum Bayes rule” also has been claimed before in Schack et
al. (2001), where they derive a rule that describes uncertainty information about unobserved
quantum measurements of a composite system as a density matrix.

Our work is most closely related to a paper by Cerf and Adami (1999), where, in the
context of quantum information theory, a formula was proposed for the conditional density
matrix that uses the matrix exponential and matrix logarithm. This special formula appears
in our calculus and is now put in a more general context. We hope to transfer many tech-
niques developed in Bayesian Statistics based on the conventional Bayes rule to the context
of generalized probabilities.

The use of the quantum relative entropy as a regularizer is reminiscent of the work on
quantum state estimation (Olivares and Paris 2007; Buz̆ek et al. 1999). Curiously, the update
rules produced in that work do not make use of the matrix logarithm and matrix exponentials
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as our new Bayes rule does. Conceivably our calculus can be applied to the state estimation
problem.

The paper is organized as follows. Section 2 recalls the relevant matrix algebra facts.
Section 3 introduces density matrices and generalized probability distributions and states
Gleason’s theorem that establishes an equivalence between them. Then, in Sect. 4 we intro-
duce a generalization � of the matrix product that is commutative and preserves positive
definiteness. This � operation is central to our calculus. Section 5 introduces generalized
joint distributions. Section 6 discusses marginalizing the joints. Next, in Sect. 7 we give for-
mulas for conditional density matrices. Section 8 presents generalizations of the Theorem
of Total Probability. In Sect. 9 we present the founding piece of this work, the Bayes rule for
density matrices, its derivation and various properties. We also discuss how the new Bayes
rule for density matrices is in some sense the conventional Bayes rule in an optimally chosen
eigensystem. Section 10 summarizes all the rules in our calculus and their justifications. In
the conclusion section we discuss again how our new calculus relates to quantum physics
and possible generalizations of it.

2 Facts on matrices and basic notation

In this paper generalized probability distributions, conditionals and data likelihoods are rep-
resented as symmetric positive definite matrices. We will now discuss some relevant matrix
algebra facts.

The basic fact that we use a lot is the eigendecomposition of symmetric matrices:

S = SσS� =
n∑

i=1

σisis
�
i .

This says that every such matrix can be written as a product of an orthogonal matrix of
eigenvectors S times a diagonal matrix of eigenvalues γ times S�. Alternatively it can be
written as mixture of eigendyads formed from the eigenvectors where the eigenvalues act as
mixture coefficients.

Any symmetric positive definite3 matrix C can be seen as a covariance matrix of some
random cost vector c ∈ R

n, i.e. C = E((c − E(c)(c − E(c))�). A covariance matrix C can
be depicted as an ellipse {Cu : ‖u‖2 = 1} centered at the origin, where the eigenvectors form
the principal axes and the eigenvalues are the radii of the axes (see Fig. 2).

Note that a covariance matrix C is diagonal if the components of the cost vector are
independent. The variance of the cost vector c along a vector u, that is the variance of the
dot product c�u, has the form

V(c�u) = E
(
(c�u − E(c�u))2

)

= E
(
((c� − E(c�))u)�((c� − E(c�))u)

)

= E
(
u�(c − E(c))(c − E(c))�)u

)

= u�Cu.

3We use the convention that positive definite matrices have non-negative eigenvalues and strictly positive
definite matrices have positive eigenvalues.
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The variance along an eigenvector of the covariance matrix is the corresponding eigenvalue.
Using this interpretation, the matrix C may be seen as a mapping from the unit ball to R≥0,
i.e. unit vector u is mapped to u�Cu. Figure 2 depicts the resulting figure-8-like plots in 2
and 3 dimensions. A second interpretation of the scalar u�Cu is the square length of u w.r.t.
the basis

√
C, that is u�Cu = u�√

C
√

Cu = ‖√Cu‖2
2.

The trace tr(E) of an arbitrary square matrix E is the sum of its diagonal elements Eii .
It is a linear operator. Recall that tr(EF ) = tr(FE) for any matrices E ∈ R

n×m,F ∈ R
m×n.

Also, for symmetric square matrices, tr(ST ) = ∑
i,j Sij Tij , thus trace can be seen as a dot

product between matrices. The trace has a useful cycling property: for arbitrary matrices
E,F ,G with compatible dimensions tr(EFG) = tr(FGE) = tr(GEF ). From this follows
that trace is rotation invariant in the sense that for any orthogonal matrix U , tr(UEU�) =
tr(U�UE) = tr(E). If S is symmetric, setting U to be the eigensystem of S results in the
observation that trace is equal to the sum of eigenvalues of a matrix. Also, for any orthogonal
system4 ui ,

tr(S) = tr

(
n∑

i=1

uiu
�
i

︸ ︷︷ ︸
I

S

)

=
n∑

i=1

u�
i Sui .

Therefore if S is symmetric positive definite, then tr(S) is the total variance along any set of
orthogonal directions. Recall that density matrices have trace one and therefore in this case
this total variance is always one (see Fig. 3).

The matrix exponential exp(S) of the symmetric matrix S = ∑
i σisis

�
i is computed

by exponentiating the eigenvalues and leaving the eigenvectors unchanged: exp(S) =∑
i exp(σi)sis

�
i . The matrix logarithm log(A) is defined similarly but now A must be strictly

positive definite. Clearly, the two functions are inverses of each other. It is important to re-
member that exp(S + T ) = exp(S) exp(T ) only holds if S and T commute i.e. ST = T S.5

However, the following trace inequality, known as the Golden-Thompson inequality6 (Bha-
tia 1997), always holds:

tr(exp(S) exp(T )) ≥ tr(exp (S + T )) for symmetric S and T , (2.1)

where equality holds iff both symmetric matrices commute.

3 Generalized probability distributions and density matrices

In quantum physics a dyad uu� represents a pure state and density matrices are mixture
states. As we shall see density matrices can be interpreted as generalized probability dis-
tributions over the set of dyads. Note that in this paper we want to address the statistics
community and use linear algebra notation instead of Dirac notation. Any probability vector
(P (Mi)) can be represented as a diagonal matrix diag(P (Mi)) = ∑

i P (Mi)eie
�
i , where ei

denotes the ith standard basis vector. This means that conventional probability vectors are
special density matrices where the eigenvectors are fixed to be the standard basis vectors.

4A set of unit vectors ui is orthogonal iff
∑

i uiu
�
i

= I .
5This occurs iff the two symmetric matrices have the same eigensystem.
6Note that the Golden-Thompson inequality does not generalize to three matrices, i.e. there exist symmetric
S, T , U , s.t. tr(exp(S) exp(T ) exp(U)) � tr(exp(S + T + U)).
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For the sake of simplicity we assume that our vector space is R
n. However, everything

discussed in this section holds for separable finite or infinite dimensional real and complex
Hilbert spaces.

A function μ(u) from unit vectors u in R
n to R is called a generalized probability dis-

tributions if the following two conditions hold:

– ∀u, 0 ≤ μ(u) ≤ 1.
– If u1, . . . ,un form an orthonormal system for R

n, then
∑

μ(ui ) = 1.

Gleason’s Theorem states that there is a one-to-one correspondence between generalized
probability distributions and density matrices7 in R

n×n:

Theorem 1 (Gleason 1957) Let n ≥ 3.8 Then any generalized probability distribution μ on
R

n has the form μ(u) = tr(Wuu�), for a uniquely defined density matrix W .

It is easy to see that every density matrix defines a generalized probability distribution.
The other direction, is highly non-trivial.9 As discussed in the introduction, the dyads uu�

function as elementary events. One may ask what corresponds to arbitrary events and how
probabilities are defined for them. In the conventional case, an event is a subset of the do-
main which can be represented as a vector in {0,1}n. In the generalized setting, an event is
a symmetric positive definite matrix P with eigenvalues in {0,1}. Each such matrix P with
eigendecomposition

∑k

i=1 pip
�
i is a projection matrix for a subspace of R

n and its probabil-
ity w.r.t. a distribution W is defined as the sum of the probabilities of the elementary events
pip

�
i comprising P :

tr(WP ) =
k∑

i=1

tr(Wpip
�
i ).

Interpreting P as a covariance matrix of some random variable, we can also expand W and
sum the variance along its eigendirections wi weighted by the eigenvalues ωi which are
probabilities:

tr(WP ) = tr

(
n∑

i=1

ωiwiw
�
i P

)

=
n∑

i=1

probability
︷︸︸︷
ωi

variance
︷ ︸︸ ︷
w�

i Pwi
︸ ︷︷ ︸

expected variance

. (3.1)

Random variables are defined in an analogous way. In the conventional case a random
variable associates a real value with each point. Now a random variable is an arbitrary sym-
metric matrix S. Such matrices have arbitrary real numbers as their eigenvalues and trace
tr(WS) when S is expanded becomes the expectation of the random variable w.r.t. den-

7The core of the original proof of Gleason’s Theorem was for R
3 (Gleason 1957), and he then generalized

the proof to separable real and complex Hilbert spaces of dimension n ≥ 3.
8A slightly different version of this theorem that is based on “effects” instead of dyads holds for dimension 2
as well (Caves et al. 2004).
9However, if dyads are replaced by “effects” then the proofs are much simpler (Caves et al. 2004).
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sity W :

tr(WS) = tr

(

W
∑

i

σisis
�
i

)

=
∑

i

outcome
︷︸︸︷
σi

probability
︷ ︸︸ ︷
s�
i Wsi

︸ ︷︷ ︸
expected outcome

. (3.2)

As discussed before, the conventional case of the expectation calculation is always retained
as a special case when all the matrices are diagonal (i.e. fixed eigensystem I ). In quantum
physics the expectation calculation tr(WS) has the following interpretation: an instrument
is represented by a hermitian matrix S and tr(WS) is the expected value of a quantum
measurement of the mixed state W with instrument S. The eigenvalues σi of the instrument
represent the possible numerical measurement outcomes. Each one of those outcomes is
observed with probability s�

i Wsi , where si is the associated eigenvector of the instrument
matrix S.

In real quantum systems the measurement causes the mixtures state W to collapse into
one of the orthogonal states {s1s

�
1 , . . . , sn, s

�
n }: the successor state is sis

�
i with probability

s�
i Wsi :

W
measurement−→

collapse

∑

i

probability
︷ ︸︸ ︷
s�
i Wsi sis

�
i

︸ ︷︷ ︸
expected state

.

As we shall see, the expected measurement calculations play an important part in our calcu-
lus. However our update rules for density matrices (such as our Bayes rule) do not explicitly
include a collapse in the above sense.

Note that some of the equations above hold for arbitrary decompositions into a linear
combination of dyads of any size. For example (3.1), holds for any decomposition W =∑

i ωiwiw
�
i , i.e. the ωi may be negative, the wi may be non-orthogonal, and the size of the

decomposition may be larger than n. If the ωi are non-negative, then they form a probability
vector. Similarly, (3.2) also holds for any decomposition S = ∑

i σisis
�
i . However, quantum

measurements are always based on an orthogonal system. Furthermore, orthogonal systems
are special in that the orthogonal decomposition of a density matrix W = ∑

i ωiwiw
�
i attains

the minimum of the entropy
∑

i −ωi lnωi over all possible decompositions of W (inequality
(11.86) in Nielsen and Chuang 2000).

A question that naturally arises is whether we can model the generalized probability dis-
tributions defined above with a conventional probability space. In other words, is there a
conventional probability space and two mappings: one that maps density matrices to con-
ventional probability distributions and the other mapping dyads to events of this probability
space. The requirement on these two mappings is that the conventional probability calcula-
tions using the images of density matrices and dyads under these mappings satisfy the def-
inition of the generalized probability distributions given above. Essentially, it is known that
conventional probability spaces cannot satisfactorily model generalized probabilities, but
the details are rather involved. This topic has received considerable attention in the quantum
physics community and we refer readers to Holevo (2001) for an extended discussion of
impossibility results. Here we only give one simple attempt to model density matrices with
a conventional probability space and show that the two natural mappings fail to satisfy the
requirements.
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A natural interpretation of a density matrix is to view it as a parameterized density over
the unit sphere. We claim that if μ(u) is the uniform density on the sphere, then for any
symmetric positive definite matrix A ∈ R

n×n of trace n, u�Auμ(u) is also a conventional
probability density on the sphere:

∫

u�
A

︷ ︸︸ ︷∑

i

αiaia
�
i uμ(u)du =

∑

i

αi

∫

(u�ai )
2μ(u)du

=
∑

i

αi

∫

(u�(1,0, . . . ,0))2μ(u)du

= tr(A)

∫

(u1)
2μ(u)du

= tr(A)

n︸ ︷︷ ︸
1

∫ ∑

i

u2
i

︸ ︷︷ ︸
1

μ(u)du = 1.

In the second equality we used the fact that μ(u)du is uniform and therefore the integral
of (u�ai )

2 is the same as the integral of the squared dot product of u with the unit vector
(1,0, . . . ,0)�. In the last equality we again used symmetry: The integral of the square of
one component equals the average of the squares of all components.

We modeled density matrices as conventional probability densities over the sphere. Now
the natural mapping from dyads to events in the conventional probability space (the sphere)
maps uu� to {u,−u}. However the probability of the latter sets of size 2 is zero with re-
spect to the conventional probabilities densities we defined on the sphere. In particular the
probability on any n orthogonal dyads does not sum to one.

4 Commutative matrix product operation

It is well known that the product of two symmetric positive definite matrices might be nei-
ther symmetric nor positive definite (see Fig. 4). In this section we define a commutative
“product” operation between symmetric positive definite matrices that does result in a sym-
metric positive definite matrix. Our first definition of this operation requires the two matrices
to be strictly positive definite. We then extend the definition to arbitrary symmetric positive
definite matrices and prove many properties of this product.

For two symmetric and strictly positive definite matrices A and B , we first define the �
as:

A � B :=

sym.pos.def.
︷ ︸︸ ︷

exp(

sym.
︷ ︸︸ ︷

log

sym.pos.def.
︷︸︸︷
A +

sym.
︷ ︸︸ ︷

log

sym.pos.def.
︷︸︸︷
B ), (4.1)

where here the exponential and logarithm are matrix functions. The matrix log of both ma-
trices produces symmetric matrices which are closed under addition and the matrix expo-
nential of the sum returns a symmetric positive definite matrix. See Fig. 4 for a comparison
of matrix product and �.



72 Mach Learn (2010) 78: 63–101

Fig. 4 The matrix product of two positive definite matrices does not preserve positive definiteness. For two
matrices A and B we plot their ellipses Au,Bu and figure eights tr(Auu�)u, tr(Buu�)u (for unit u). Both
ellipses are very thin, i.e. the ratio between the two eigenvalues of each matrix is 100. We also plot the ellipse
ABu and the curve tr(ABuu�)u. The latter curve consists of two figure eights, the larger one constitutes
the part where the trace is positive and the smaller and skinnier one is the part where the trace is negative.
This means that AB is not positive definite any more. The product is also not symmetric because the min/max
value of tr(ABuu�) does not correspond to the axes of the ellipse. Finally, the corresponding plots for A�B
indicate that this matrix is symmetric and positive definite

Note that we expressed the operation � between symmetric strictly positive definite ma-
trices as a + operation between symmetric matrices. Similarly, for any two arbitrary sym-
metric matrices S and T ,

S + T = log(exp(S) � exp(T )).

The operation � was used in Alexa (2002) to define a “product” between two linear
transformations that is commutative. In this paper we use � to define conditional density
matrices and generalizations of the Bayes rule. A similar path was followed by Cerf and
Adami (1999) for defining conditional density matrices of composite systems. We also give
a motivation for the operation based on the minimum relative entropy principle (as was done
in the conference paper Warmuth 2005) and our probability calculus includes the formula
of Cerf and Adami (1999) for composite systems as a special case.

Note that the formula for � in (4.1) is not defined if some of the eigenvalues of A or
B are zero. We now rewrite the operation using the Lie-Trotter formula and then extend it
to arbitrary positive definite matrices. The Lie-Trotter formula (see e.g. Bhatia 1997) is the
following equation:

exp(E + F ) = lim
n→∞ (exp(E/n) exp(F/n))n , any square matrices E,F .

By choosing E = logA and F = logB , for symmetric and strictly positive definite A and
B , we obtain:

exp(logA + logB) = lim
n→∞(A1/nB1/n)n.
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diag(A) diag(B) diag(AB)

0 0 0
a 0 0
0 b 0
a b ab

Fig. 5 (Color online) When the ellipses A and B don’t have the same span, then A�B lies in the intersection
of both spans. In the depicted case the intersection is a degenerate ellipse of dimension one (blue line). This
generalizes the following intersection property of the matrix product when A and B are both diagonal (here
of dimension four): (AB)i,i �= 0 iff Ai,i �= 0 and Bi,i �= 0

Fig. 6 The behavior of the limit formula for � operation. We can see that the additional figure eights indi-
cating negative definiteness are smaller for (A1/2B1/2)2 than for AB . As n increases, the additional figure
eights shrink further and limn→∞(A1/nB1/n)n = A � B becomes positive definite. Also, AB and BA are
fairly different from one another. The matrices (A1/2B1/2)2 and (B1/2A1/2)2 are already more similar and
the difference between the two multiplication orders decreases with n until in the limit A � B = B � A

As n increases, (A1/nB1/n)n gets closer and closer to being positive definite and symmetric.
The first couple iterations of the limit formula are plotted in Fig. 6. See Alexa (2002) for
additional plots. Notice that the limit is defined even when A and B have zero eigenvalues.
We therefore extend the definition of � to arbitrary symmetric positive definite matrices A

and B:

A � B := lim
n→∞(A1/nB1/n)n. (4.2)

From now on we use the above exended definition of �. Numerous properties of this
operation are given below.

Theorem 2 For any symmetric positive definite matrices A,B,C the following holds:

OP1 Intersection property:

range(A � B) = range(A) ∩ range(B).

where the range of a matrix is the linear subspace spanned by the columns of the
matrix. This property generalizes the intersection properties for products of diagonal
matrices (which model conventional probability distributions): the product of two
diagonal matrices with the characteristic vectors of two subsets as diagonals gives a
diagonal matrix formed from the characteristic vector of the intersection (see Fig. 5).
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OP2 Let RA be a matrix whose columns form an orthonormal basis for the range of A, i.e.
RA ∈ R

n×k and R�
ARA = I k , where k is the dimensionality of the range of A. Define

RB analogously. In a similar fashion RA∩B will contain the basis for the intersection
of ranges. Let log+ denote the modified matrix logarithm that takes the log of non-
zero eigenvalues but leaves the zero eigenvalues unchanged. This operation can be
also defined by the following formula:10

log+ A = RA log(R�
AARA)R�

A. (4.3)

With this notation, � can be written as

A � B = RA∩B exp(R�
A∩B(log+ A + log+ B)RA∩B)R�

A∩B . (4.4)

OP3 A � B = AB if A and B commute.
OP4 � is commutative, i.e. A � B = B � A.
OP5 The identity matrix is the neutral element, i.e. A � I = A.
OP6 (cA) � B = c(A � B), for any scalar c > 0.
OP7 A�A−1 = I for invertible A. Also, A�A+ = P A, where A+ denotes the pseudoin-

verse and P A is the projection matrix11 for range(A).
OP8 � is associative, i.e. (A � B) � C = A � (B � C).
OP9 Monotonic convergence of the limit defining �:

∀n ≥ 1 : tr(A1/(n+1)B1/(n+1))n+1 ≤ tr(A1/nB1/n)n.

OP10 tr(A � B) ≤ tr(AB), where equality holds iff A and B commute. In particular, for
any unit u tr(A � uu�) = tr(Auu�) iff u is an eigenvector of A.

OP11 For any unit direction u ∈ range(A), A � uu� = eu�(log+ A)uuu�.
OP12 For any unit direction u and eigendecomposition

∑
i αiaia

�
i of a strictly positive

definite matrix A,

tr(Auu�) =
∑

i

(u�ai )
2αi, and tr(A � uu�) =

∏

i

α
(u�ai )

2

i ,

i.e. the matrix product corresponds to an arithmetic average and the � product to a
geometric average of the eigenvalues of A.

OP13 det(A � B) = det(A)det(B), which is the same as for the normal matrix product.
OP14 For any orthogonal system ui , we have

∏
i tr(A � uiu

�
i ) = det(A).

OP15 For any unit direction u, tr((A � B) � uu�) = tr(A � uu�)tr(B � uu�).
OP16 For any unit direction u ∈ rangeA, tr(A+ �uu�) = 1

tr(A�uu�)
, where A+ denotes the

pseudoinverse.

Proof Properties OP1 and OP2 follow from results in Kato (1978) or Theorem 1.2 of Simon
(1979). Here we only prove that range(A�B) ⊆ range(A)∩range(B). We can split the limit

10Note that when the rank k of A is zero, then one still can define the projections in a consistent manner. In

this case RA is of dimension n × 0, and the matrices R�
ARA and log(R�

AERA) are of dimension 0 × 0 for

any E ∈ R
n×n. Also it is natural to define RAER�

A as the n× n zero matrix 0. With this definition, the r.h.s.
of (4.3) is 0 when A is 0.
11Note that PA = RAR�

A .
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defining � as follows:

A � B = lim
n→∞(A1/nB1/n)n = lim

n→∞A1/n lim
n→∞B1/n(A1/nB1/n)n−1. (4.5)

Here we used the property that limEnF n = limEn limF n if all the limits exist. This follows
from the corresponding sum and product properties of scalar limits and the fact that entries
of a product matrix are finite sums of products.

It is easy to see that limn→∞ A1/n = P A because the matrix power for a symmetric matrix
corresponds to taking powers of the eigenvalues and n-th roots converge to either zero or
one. Thus the limit is a matrix whose eigenvalues are 0 or 1, which is a projection matrix.
By plugging

lim
n→∞A1/n = P A = P AP A = P A lim

n→∞A1/n

into (4.5) we get

A � B = P A lim
n→∞A1/n lim

n→∞B1/n(A1/nB1/n)n−1 = P A(A � B).

This implies that range(A�B) ⊆ range(A). Similarly we can prove A�B = (A�B)P B ,
which implies that range(A � B) ⊆ range(B), and therefore range(A � B) ⊆ range(A) ∩
range(B).

Property OP3 can be seen from the definition of � via the limit formula (4.2): when
A and B commute, then the n copies of A1/n in (A1/nB1/n)n can be gathered into A and
similarly for B1/n.

Properties 4–7 easily follow from the formula (4.4) for �.
Property OP8. For strictly positive definite A,B,C associativity reduces to the associa-

tivity of addition in the log domain. To show it in general we use the representation (4.4) of
� via the log+ operation. Let R = R(A∩B)∩C = RA∩(B∩C). Then:

(A � B) � C = R exp(R�(log+(A � B) + log+ C)R)R�.

Now we rewrite log+(A � B) using (4.3):

log+(A � B) = RA∩B log(R�
A∩B(A � B)RA∩B)R�

A∩B .

Substituting expression (4.4) for A � B into the above and using R�
A∩BRA∩B = I k we get:

log+(A � B) = RA∩BR�
A∩B︸ ︷︷ ︸

PA∩B

(log+ A + log+ B)RA∩BR�
A∩B︸ ︷︷ ︸

PA∩B

. (4.6)

Here P A∩B = RA∩BR�
A∩B is the projection matrix onto the subspace range(A) ∩ range(B).

All the basis vectors of A ∩ B ∩ C obviously lie in the larger subspace as well, thus the
projection leaves them unchanged and we get P A∩BR = R, R�P A∩B = R�. Thus:

(A � B) � C = R exp(R�(log+ A + log+ B + log+ C)R)R�.

The same expression can be obtained for A � (B � C), thus establishing associativity.
Property OP9. By Fact 8.10.9 of Bernstein (2005), we have that for any positive definite

matrices A and B , and n ≥ 1:

tr(AnBn)n+1 ≤ tr(An+1Bn+1)n.
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Now by substituting A = A1/(n(n+1)), B = B1/(n(n+1)) the monotonicity property OP9 imme-
diately follows.

Property OP10. When A and B are strictly positive definite, this inequality is an instanti-
ation of the Golden-Thompson inequality (2.1). For arbitrary positive definite matrices, the
property follows from the previous monotonicity property OP9. Note that there are symmet-
ric positive definite matrices A, B and C s.t. tr(A � B � C) � tr(ABC).

Property OP11. We use the expression for � operation given in (4.4). Since u ∈
range(A), the basis of the intersection space is u itself:

uu� � A = u exp(u�(log+ uu� + log+ A)u)u�.

Note that log+ uu� = 0 and that the expression inside the exponential is a scalar. The desired
property immediately follows by moving this scalar to the front.

Property OP12. The expression for the trace of the matrix product is the expected mea-
surement interpretation (3.2) discussed in Sect. 3. Note that (u�ai )

2 is a probability vector
and in this expression uu� can be replaced by any density matrix.

For the second trace tr(A�uu�), we can rewrite it using OP11 and eigendecomposition
of A as follows:

tr(A � uu�) = eu� logAu = e
∑

i (ai ·u)2 logαi =
∏

i

α
(u�ai )

2

i ,

which is a weighted geometric average of αi with weights (u�ai )
2.

Property OP13. Since det(EF ) = det(E)det(F ), and for symmetric matrices S and
r ∈ R, det(Sr ) = det(S)r , we have det((A1/nB1/n)n) = det(A)det(B) for all n ∈ N. By
property (4.2), the limit of the l.h.s. of the last equality becomes A � B and this proves the
property.

Property OP14. If A is not full rank, then det(A) is zero. In that case, there will be some
ui that is not in the range of A. For that ui , tr(A � uiu

�
i ) = 0, making the whole product

zero. When A has full rank, we rewrite the product as follows:

∏

i

tr(A � uiu
�
i )

OP11=
∏

i

etr(logAuiu
�
i

)

= etr(logA
∑

uiu
�
i

) = etr(logA) =
∏

i

αi = det(A).

Property OP15. If u /∈ range(A)∩ range(B)
OP1= range(A�B), then the property trivially

holds because tr((A � B) � uu�) and either tr(A � uu�) or tr(B � uu�) are zero. When
u ∈ range(A) ∩ range(B), then the property essentially follows from ea+b = eaeb:

tr((A � B) � uu�)

OP11= eu� log+(A�B)u (4.6)= eu�PA∩B (log+ A+log+ B)PA∩Bu = eu�(log+ A+log+ B)u

= eu� log+ Aueu� log+ Bu = tr(A � uu�)tr(B � uu�).

Needless to say Property OP15 does not hold if uu� is replaced by a mixture of dyads.
Property OP16. Trivially follows from OP11. �

We will now discuss some of the properties further. In particular, we will show a simple
example that demonstrates that the upper bound OP10 can be quite loose when both matrices
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are dyads. In this case the inequality becomes:

tr(uu� � vv�) ≤ tr(uu�vv�) = (u · v)2.

The right hand side can be made arbitrarily close to one by choosing almost parallel u

and v. The left side is zero in this case, which can be seen by analyzing the intersection of
the ranges. Dyads are rank one matrices and their ranges are lines through the origin. The
intersection of two such lines is either only the origin or the line itself. Thus, by Property
OP1 it follows that uu� � vv� = 0, unless u = ±v. This can also be seen from the limit
expression in (4.2):

uu� � vv� = lim
n→∞((uu�)

1
n (vv�)

1
n )n = lim

n→∞(uu�vv�)n

=
(

lim
n→∞(u · v)2n−1

)
uv� = 0, unless u = ±v.

Where the last equality holds because |u · v| < 1, when u �= ±v.
Note that the expression (4.4) for � based on log+ gives us a convenient method for

computing the operation even when the matrices have some zero eigenvalues. The mod-
ified matrix logarithm log+ is easily computed via (4.3). The matrix RA containing the
orthonormal basis for range of A can be computed using Gram-Schmidt orthogonalization
procedure or the QR-decomposition. To compute the basis for the intersection of range(A)

and range(B), we express the intersection i.t.o. the union and the orthogonal complement ⊥

of a space:

range(A) ∩ range(B) = (
range(A)⊥ ∪ range(B)⊥)⊥

.

For any matrix E, an orthonormal basis for range(E)⊥ can be obtained by completing an
orthonormal basis for range(E) to an orthonormal basis for the whole space. The additional
basis vectors needed are the basis for range(E)⊥. Also, if we have two matrices E and F ,
we can get the range for the union of their ranges just by putting all columns of E and
F together into a bigger matrix G = (E,F ). Clearly, range(G) = range(E) ∪ range(F ).
Piecing all of this together gives an implementation of the � operation.

5 Joint distributions

A density matrix defines a generalized probability distribution over the dyads from one
space. However we need to consider several spaces and joint distributions over them. In
the conventional case A,B denote finite sets {a1, . . . , anA

}, {b1, . . . , bnB
}, (P (ai)), (P (bj ))

probability vectors over these sets and (P (ai, bj )) is an nA ×nB dimensional matrix of prob-
abilities for the tuple set A × B . In the generalized case, A,B denote real finite dimensional
vector spaces of dimension nA, nB and D(A),D(B) are the density matrices defining the
generalized probability distributions over these spaces. The joint space (A,B) is the tensor
product12 between the spaces A and B, which is of dimension nAnB. The joint distribution
is specified by a density matrix over this joint space, denoted by D(A,B).

12See Bhatia (1997) for a formal definition of tensor product between vector spaces. For us, the tensor product
of R

nA and R
nB is R

nAnB .



78 Mach Learn (2010) 78: 63–101

We let D(a),D(b) denote the probabilities assigned to dyads aa�,bb� from the spaces
A,B by the density matrices D(A),D(B), respectively:

D(a) := tr(D(A)aa�), D(b) := tr(D(B)bb�). (MJ1)

The conventional probability distributions can be seen as diagonal density matrices. A prob-
ability distribution (P (ai)) on the set A is the density matrix diag((P (ai))). Also P (aj ) =
e�

j diag((P (ai)))ej .
To introduce the joint probability D(a,b) we need the Kronecker matrix product. Given

two matrices E and F with dimensions n × m and p × q , their Kronecker product (also
known as direct product or tensor product) E ⊗ F is a matrix with dimensions np × mq

which in block form is given as:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

e11F e12F . . . e1mF

e21F e22F . . . e2mF

. . . . . . . . . . . .

en1F en2F . . . enmF

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The Kronecker product has the following useful properties:

KP1 (E ⊗ F )� = E� ⊗ F �.
KP2 (E ⊗ F )(G ⊗ H ) = EG ⊗ FH if the dimensions are appropriate.
KP3 tr(E ⊗ F ) = tr(E)tr(F ).
KP4 If symmetric matrix S has eigenvalues σi and eigenvectors si and symmetric matrix

T has eigenvalues τj and eigenvectors tj , then S ⊗ T has eigenvalues σiτj and eigen-
vectors si ⊗ t j .

KP5 For symmetric positive definite matrices A,B,C,D, (A ⊗ B) � (C ⊗ D) =
(A � C) ⊗ (B � D).

The first four properties are standard. The last property follows from the limit definition
(4.2) of the � operation.

(A ⊗ B) � (C ⊗ D) = lim
n→∞

(
(A ⊗ B)

1
n (C ⊗ D)

1
n
)n

= lim
n→∞

(
(A

1
n C

1
n ) ⊗ (B

1
n D

1
n )

)n

=
(

lim
n→∞(A

1
n B

1
n )n

)
⊗

(
lim

n→∞(C
1
n D

1
n )n

)
.

The last transition which moved the limit inside the Kronecker product, follows from the
fact that the elements of the Kronecker product matrix are just pairwise products of ele-
ments from the two matrices. And when all limits exist, a limit of a product of two number
sequences is a product of limits.

Now the joint probability D(a,b) becomes the probability assigned by density matrix
D(A,B) to the jointly specified dyad (a ⊗ b)(a ⊗ b)�:

D(a,b) := tr(D(A,B)(a ⊗ b)(a ⊗ b)�) = tr(D(A,B)(aa� ⊗ bb�)). (MJ3)

Note that in the conventional case a joint probability between two sets A and B is defined
over all pairs of points from A and B . This corresponds to the so-called “separable case”
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in the generalized setting when the joint density D(A,B) can be expressed as
∑

i σiaia
�
i ⊗

bib
�
i , where the ai and bi are states of spaces A and B, respectively. However, in the more

general case, there are elementary events in the joint space (A,B) that don’t decompose into
elementary events of the spaces A and B, i.e. there are dyads in the joint space that are not
of the form aa� ⊗ bb�, where aa� and bb� are dyads of A and B, respectively. In quantum
physics the inseparability of a density matrix is called “entanglement”.

6 Marginalization of the joint via partial traces

We would like to be able to perform marginalization operations on our joint density matrix
D(A,B), i.e. obtain the density matrix D(A) from the joint matrix. In the conventional case
the marginalization was performed by summing out one of the variables by summing the
rows or the columns of the matrix specifying the joint probability distribution. For density
matrices, the analogous operation is the partial trace (see e.g. Nielsen and Chuang 2000).

The partial trace is a generalization of normal matrix trace. It typically produces a matrix
instead of a number and can be used to retrieve the (scaled) factor matrices from a Kronecker
product. We denote the partial trace with trA, where A specifies the space to be “summed
out”. Suppose G is a matrix over the space A⊗B and A has dimension n and B dimension m.
Thus G has dimension nm×nm and can be written in block form as a n×n matrix of m×m

matrices Gij :

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

G11 G12 . . . G1n

G21 G22 . . . G2n

. . . . . . . . . . . .

Gn1 Gn2 . . . Gnn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Here we suppose that space A is R
n and space B is R

m. Then the two partial traces of this
matrix are given by:

trA(G)
︸ ︷︷ ︸

m×m

= G11 + G22 + · · · + Gnn,

trB(G)
︸ ︷︷ ︸

n×n

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

tr(G11) tr(G12) . . . tr(G1n)

tr(G21) tr(G22) . . . tr(G2n)

. . . . . . . . . . . .

tr(Gn1) tr(Gn2) . . . tr(Gnn)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

In multilinear algebra partial traces are known as tensor contractions and can of course
be generalized to the tensor product of more than two spaces. The partial trace is a linear
operator and we now give some other useful properties:

PT1 trA(E ⊗ F ) = tr(E)F , trB(E ⊗ F ) = tr(F )E.
PT2 tr(G) = tr(trA(G)) = tr(trB(G)).
PT3 trA(G(IA ⊗ F )) = trA(G)F , trA((IA ⊗ F )G) = F trA(G).
PT4 tr(G(E ⊗ F )) = tr(trB(G(IA ⊗ F ))E).
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The first three properties are straightforward and the last one follows from the others as
follows:

tr(G(E ⊗ F ))
KP2= tr(G(IA ⊗ F )(E ⊗ IB)) = tr((E ⊗ IB)G(IA ⊗ F ))

PT2= tr(trB((E ⊗ IB)G(IA ⊗ F )))
PT3= tr(EtrB(G(IA ⊗ F )).

We use the partial trace to define marginals as follows:

D(A) := trB(D(A,B)), D(B) := trA(D(A,B)). (MJ2)

The following lemma shows that D(A) and D(B) defined this way are again density matri-
ces.

Lemma 1 Partial trace of a density matrix is also a density matrix.

Proof Symmetry is obvious. Trace one follows from Property PT2 of the partial trace:

tr(D(A)) = tr(trB(D(A,B))) = tr(D(A,B)) = 1.

Positive definiteness follows by a similar argument:

a�D(A)a = tr(D(A)aa�)
PT3= tr(trB(D(A,B)(aa� ⊗ IB)))

PT2= tr

(

D(A,B)

(

aa� ⊗
∑

i

bib
�
i

︸ ︷︷ ︸
IB

))

=
∑

i

tr(D(A,B)(aa� ⊗ bib
�
i ))

=
∑

i

(a ⊗ bi )
�D(A,B)(a ⊗ bi ) ≥ 0.

�

Partial traces also allow us to define objects of the type D(A,b). In the conventional case this
corresponds to taking one row or column out of the joint probability table. In the generalized
case we want the following property to be satisfied:

tr(D(A,b)aa�) = D(a,b). (MJ5)

This is accomplished by defining D(A,b) via the following formula:

D(A,b) := trB(D(A,B)(IA ⊗ bb�)). (MJ4)

Property MJ5 now follows from partial trace Property PT4. We can also see that trace of
D(A,b) gives us the probability D(b):
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tr(D(A,b))
MJ4= tr(trB(D(A,B)(IA ⊗ bb�)))

PT2= tr(trA(D(A,B)(IA ⊗ bb�)))

PT3= tr(trA(D(A,B))bb�)
MJ2= tr(D(B)bb�) = D(b). (6.1)

A brief note on matrix properties of D(A,b). We just saw that its trace is D(b) which
is between zero and one. Since it satisfies Property (MJ5), it is positive definite as well.
Symmetry is also easily verified.

Note that for any orthogonal system bi of B,

D(A) =
∑

i

D(A,bi ).

This can be seen as follows.

D(A)
MJ2= trB(D(A,B)) = trB(D(A,B)(IA ⊗ IB))

= trB

(

D(A,B)

(

IA ⊗
∑

i

bib
�
i

︸ ︷︷ ︸
IB

))

=
∑

i

trB(D(A,B)(IA ⊗ bib
�
i ))

MJ4=
∑

i

D(A,bi ).

The conventional definition of independence also naturally generalizes: D(A) is indepen-
dent of D(B) if the joint density matrix decomposes: D(A,B) = D(A) ⊗ D(B). It is easy
to see that in this case we have D(a,b) = D(a)D(b) for all a,b:

D(a,b) = tr((D(A) ⊗ D(B))(aa� ⊗ bb�))
KP2= tr((D(A)aa�) ⊗ (D(B)bb�))

KP3= tr(D(A)aa�)tr(D(B)bb�) = D(a)D(b).

7 Conditional probabilities

The topic of conditional probabilities in this generalized setting contains many subtleties.
First we will give the defining formulas for conditional density matrices and then discuss
some of the issues.

CP1 D(A|B) := D(A,B)�(IA ⊗D(B))−1 (formula (4) of Cerf and Adami 1999 expressed
with the � operation). This formula requires D(B) to be invertible. In the conventional
case, this corresponds to the conditional probabilities being undefined if the event con-
ditioned on has probability zero.

CP2 D(A|b) := D(A,b)

D(b)
.

CP3 D(a|B) := D(a,B) � D(B)−1.
CP4 D(a|b) := D(a,b)

D(b)
. This basic conditional probability is a straightforward generaliza-

tion of the conventional case. It also has a quantum-mechanical interpretation. See
Appendix for details.

Note that CP1 has the form: density matrix � inverse of a normalization. We can also
reexpress the other definitions in this unified form:
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CP′2 D(A|b) = trB(D(A,B)(IA ⊗ bb�))
︸ ︷︷ ︸

D(A,b)

� trB((IA ⊗ D(B))(IA ⊗ bb�))−1

︸ ︷︷ ︸
1

D(b)
IA

.

CP′3 D(a|B) = trA(D(A,B)(aa� ⊗ IB))
︸ ︷︷ ︸

D(a,B)

� trA((IA ⊗ D(B))(aa� ⊗ IB))−1

︸ ︷︷ ︸
D(B)−1

.

CP′4 D(a|b) = tr(D(A,B)(aa� ⊗ bb�))
︸ ︷︷ ︸

D(a,b)

� tr((IA ⊗ D(B))(aa� ⊗ bb�))−1

︸ ︷︷ ︸
1

D(b)

.

We say that the joint density D(A,B) is decoupled if its eigendecomposition has the
form: D(A,B) = (WA ⊗ WB)diag(ω)(WA ⊗ WB)�. Note that WA ⊗ WB is orthogonal
iff both WA and WB are orthogonal. As we shall see later, dealing with conditionals is
often simpler in the decoupled case. We first prove an upper bound for tr(D(A|B)) that is
tight iff the joint is decoupled.

Lemma 2 The following inequality holds:

tr(D(A|B)) ≤ nB,

where nB is the dimensionality of space B. Furthermore, tr(D(A|B)) = nB if and only if the
joint D(A,B) is decoupled.

Proof The inequality is shown using properties of � and partial traces:

tr(D(A|B))
CP1= tr(D(A,B) � (IA ⊗ D(B)−1))

OP10≤ tr(D(A,B)(IA ⊗ D(B)−1))

PT2= tr(trA(D(A,B)(IA ⊗ D(B)−1)))
PT3= tr(trA(D(A,B))

︸ ︷︷ ︸
D(B)

D(B)−1)

= tr(IB) = nB.

Remember that equality in Property OP10 of � only occurs when the two matrices com-
mute. Two matrices commute iff their eigensystems are the same. This gives us the condi-
tion that the eigensystem of D(A,B) must be the same as the eigensystem of IA ⊗D(B)−1.
The latter eigensystem is clearly decoupled. Thus for equality to hold it is necessary that the
eigensystem of D(A,B) be decoupled.

Now we will argue that it is also sufficient. Let the joint density matrix have eigensystem
D(A,B) = (WA ⊗ WB)diag(ω)(W�

A
⊗ W�

B
). IA commutes with any matrix on space A.

Therefore it suffices to show that the marginal D(B) in this case has eigensystem WB. The
decoupled eigensystem matrix WA ⊗ WB has the following list of nAnB columns:

WA ⊗ WB =
(
w1

A
⊗ w1

B
,w1

A
⊗ w2

B
, . . . ,w1

A
⊗ w

nB

B
,

w2
A

⊗ w1
B
,w2

A
⊗ w2

B
, . . . ,w2

A
⊗ w

nB

B
,

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . ,

w
nA

A
⊗ w1

B
,w

nA

A
⊗ w2

B
. . . ,w

nA

A
⊗ w

nB

B

)
.

In correspondence with this structure we adopt a double indexing scheme for the eigenvalues
ωi,j of the joint matrix D(A,B), where ωi,j is the eigenvalue associated with eigenvector
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wi
A

⊗ w
j

B
. The index i runs from 1 to nA, and j runs to nB. Now the eigendecomposition

can be written as:

D(A,B) =
∑

i,j

ωi,j (w
i
A
(wi

A
)� ⊗ w

j

B
(w

j

B
)�).

Partial trace is a linear operator and trA(wi
A
(wi

A
)� ⊗ w

j

B
(w

j

B
)�)

PT1= w
j

B
(w

j

B
)�. Therefore:

D(B) = trA(D(A,B)) =
∑

j

ωjw
j

B
(w

j

B
)�,

where ωj = ∑
i ωi,j . Thus we produced the eigendecomposition of the marginal D(B) and

it indeed has eigensystem WB. �

Let us briefly discuss the connection and difference between our notion of decoupled
joints and the notion of entanglement that appears in quantum physics. Recall that entangle-
ment, as we mentioned at the end of Sect. 5 corresponds to the fact that there are dyads cc�
in the joint space (A,B) that can’t be written as aa� ⊗ bb� for any two dyads aa� and bb�

in A and B. This notion carries over to mixed states or density matrices. In quantum physics,
a joint density matrix D(A,B) is called separable (or non-entangled) if it can be expressed
as (WA ⊗ WB)diag(ω)(WA ⊗ WB)�. The crucial difference between the definitions of
separable and decoupled matrices is that in the separable case, WA and WB don’t have to
be orthogonal. Every decoupled matrix is separable, but there are separable density matri-
ces that are not decoupled. The question of deciding whether a given matrix is separable
is known to be very difficult, whereas the question of being decoupled is easily decided by
e.g. the condition of the above lemma. One of the reasons for which Cerf and Adami (1999)
introduced a conditional density matrix via Rule CP1 was to give a necessary condition for
the separability of a joint density matrix.

To complete the rules for conditional density matrices, we would need rules that allow
us to marginalize the conditionals, e.g. for going from D(A|B) to D(a|b). One obvious
consequence of our definitions is the marginalization rule for D(A|b):

D(a|b)
CP4= D(a,b)

D(b)

MJ5= tr(D(A,b)aa�)

D(b)

CP2= tr(D(A|b)aa�). (MC4)

There don’t seem to be any other simple marginalization rules for D(A|B) and D(a|B) that
hold for arbitrary joints. However, when the joint is decoupled, then the following additional
marginalization rule for D(A|B) is valid:

Lemma 3 For all decoupled joints D(A,B),

D(a|B) = trA(D(A|B)(aa� ⊗ IB)).

Proof We will compute both sides of the equation and show them to be identical. We begin
by writing down the decomposition of the decoupled joint from Lemma 2:

D(A,B) =
∑

i,j

ωi,j (w
i
A
(wi

A
)� ⊗ w

j

B
(w

j

B
)�). (7.1)

Additionally, in the same lemma, the following form for D(B) was established in this case:

D(B) = trA(D(A,B)) =
∑

j

ωjw
j

B
(w

j

B
)�, (7.2)
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where ωj = ∑
i ωi,j . According to CP3, D(a|B) = D(a,B) � D(B)−1, therefore we will

need to compute D(a,B):

D(a,B)
MJ4= trA(D(A,B)(aa� ⊗ IB))

(7.1)=
∑

i,j

ωi,j trA((wi
A
(wi

A
)� ⊗ w

j

B
(w

j

B
)�)(aa� ⊗ IB))

KP2=
∑

i,j

ωi,j trA((wi
A
(wi

A
)�)aa� ⊗ w

j

B
(w

j

B
)�)

PT1=
∑

i,j

ωi,j (w
i
A

· a)2w
j

B
(w

j

B
)�.

Together with (7.2), this gives:

D(a|B) =
∑

i,j

ωi,j (w
i
A

· a)2

ωj

w
j

B
(w

j

B
)�.

Now, we proceed to the right side of the equation in the lemma. Substituting (7.1)
and (7.2) into the formula for D(A|B) we obtain:

D(A|B)
CP1= D(A,B) � (IA ⊗ D(B)−1) =

∑

i,j

ωi,j

ωj

(wi
A
(wi

A
)� ⊗ w

j

B
(w

j

B
)�). (7.3)

Using linearity of the partial trace we compute the right side as follows:

trA(D(A|B)(aa� ⊗ IB))
(7.3)=

∑

i,j

ωi,j

ωj

trA((wi
A
(wi

A
)� ⊗ w

j

B
(w

j

B
)�)(aa� ⊗ IB))

KP2=
∑

i,j

ωi,j

ωj

trA((wi
A
(wi

A
)�)aa� ⊗ w

j

B
(w

j

B
)�)

PT1=
∑

i,j

ωi,j (w
i
A

· a)2

ωj

w
j

B
(w

j

B
)�.

�

As discussed, obtaining D(a|b) = tr(D(A,B)(aa�⊗bb�))

tr(D(B)bb�)
from D(A|B) is non-trivial. In par-

ticular, there are cases where

tr(D(A|B)(aa� ⊗ bb�)) �= D(a|b),

even when D(A,B) is decoupled and a and b are not eigenvectors of D(A) and D(B),
respectively. Curiously enough, if we replace the matrix product with �, then we always
have

tr(D(A|B) � (aa� ⊗ bb�))

CP1= tr((D(A,B) � (IA ⊗ D(B)−1)) � (aa� ⊗ bb�))

OP15= tr(D(A,B) � (aa� ⊗ bb�))tr((IA ⊗ D(B)−1) � (aa� ⊗ bb�))

OP16= tr(D(A,B) � (aa� ⊗ bb�))

tr(D(B) � bb�)
.

Let us now recall the conditionals in the conventional probability theory. The full condi-
tional table P (A|B) lists conditional probabilities of all pairs of elementary events P (ai |bj ).
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This table has the obvious properties: The sum of all entries is nB and the sum of any col-
umn is 1, i.e.

∑
i P (ai |bj ) = ∑

i

P (ai ,bj )

P (bj )
= P(bj )

P (bj )
= 1. Thus a conditional table is a column-

stochastic matrix and for any such matrix we can construct a joint that has that matrix as its
conditional table. For example we can take arbitrary probability vector p and multiply the
i-th column of P (A|B) by pi , now the sum of each column is pi and thus the sum of all
entries is 1 and we have a valid joint. Note that this implies that many different joints have
the same conditional table.

The decoupled case behaves as the conventional case, i.e. many joints correspond to the
same conditional. A decoupled joint and conditional always have the same eigensystem and
going from the joint to the conditional is similar to the conventional case (see (7.1–7.3) for
details).

However, for non-decoupled joint density matrices, i.e. when tr(D(A|B)) < nB

(Lemma 2), the situation is quite different. For example, the eigenvalues of D(A|B) can
now be bigger than 1 (Cerf and Adami 1999). Also based on numerical experiments, we
conjecture that in the non-decoupled case, the mapping between D(A,B) and D(A|B) is
invertible, i.e. unlike the conventional case, there is only one joint that gives rise to a given
conditional matrix. In other words we conjecture that in the non-decoupled case it suffices
to specify the conditional D(A|B).

More specifically, we claim that the following EM-like algorithm converges to D(B) and

then D(A,B)
CP1= D(A|B) � D(B): W 0 is initialized to IB/nB and the estimate W t+1 for

D(B) is computed from D(A|B) and the previous estimate W t as

W t+1 = trA(D(A|B) � (IA ⊗ W t ))

tr(D(A|B) � (IA ⊗ W t ))
.

8 Theorems of total probability

The Theorem of Total Probability is an important calculation in conventional probability
theory. It expresses probability of some event a as an expected conditional probability of
the elementary events bi that form a partition of the probability space B:

P (a) =
∑

i

P (a|bi)P (bi).

TP1 For any orthogonal system bi of B, D(a) = ∑
i D(a|bi )D(bi ).

TP2 D(a) = tr(D(a|B) � D(B)).
TP3 D(A) = trB(D(A|B) � (IA ⊗ D(B))).

The first formula can be shown as follows:

D(a) = tr(D(a,B)) =
∑

i

b�
i D(a,B)bi =

∑

i

D(a,bi ) =
∑

i

D(a|bi )D(bi ).

To derive the second apply �D(B) to both sides of CP3, take trace of both sides and
use (6.1). The proof of the third property follows the same outline but uses CP1 and MJ2.

Conventional versions of the last two properties are obtained when the density and con-
ditional matrices are diagonal. Note that in general these generalizations of the Theorem of
Total Probability do not “decouple”, i.e. you cannot write them as a sum of products of con-
ditional and marginal probabilities. However, using the Property OP10 of � operation we
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can establish upper bounds on probability of D(a) in terms of “decoupled” sums that look
like the conventional versions of the Theorem of Total Probability. If D(B) = ∑

i ωiwiw
�
i

and D(a|B) = ∑
i λiuiu

�
i are eigendecompositions of the corresponding matrices, then

D(a) = tr(D(a|B) � D(B)) ≤ tr(D(a|B)D(B))

=
∑

i

probability
︷︸︸︷
ωi

variance
︷ ︸︸ ︷
w�

i D(a|B)wi

︸ ︷︷ ︸
expected variance

=
∑

i

probability D(ui )
︷ ︸︸ ︷
u�

i D(B)ui

outcome
︷︸︸︷
λi

︸ ︷︷ ︸
expected measurement

. (8.1)

The first version of the upper bound corresponds to using the eigendecomposition of D(B)

and can be interpreted as an expected variance calculation with D(a|B) as the covariance
matrix. The second version expands D(a|B) and corresponds to a quantum measurement
of system in state D(B) with instrument specified by D(a|B). Letting p(bi) equal ωi or
u�

i D(B)ui and letting p(ai |bi) equal w�
i D(a|B)wi or λi , we see the correspondence of

these upper bounds to the conventional Theorem of Total Probability. The equality only
occurs when D(a|B) and D(B) commute.

9 Bayes rules

In the conventional setup we assume that a model Mi is chosen with prior probability P (Mi).
The model then generates the data y with probability P (y|Mi), i.e.

P (y) =
∑

i

P (Mi)P (y|Mi)

= tr(diag ((P (Mi))diag ((P (y|Mi))) .

The reason why we expressed P (y) as a trace of two diagonal matrices will become apparent
in a moment.

The generalized setup is completely analogous. There is an underlying joint space (M,Y)

between the model space M and the data space Y. The prior is specified by a density matrix
D(M). The data is a unit direction y in Y space that is generated by the density D(Y). The
probability D(y) can be expressed i.t.o. the prior D(M) and data likelihood D(y|M) using
TP2:

D(y) = tr(D(M) � D(y|M)).

Note that in the conventional case we first chose a model based on the prior and then gen-
erated data based on the chosen model. In the generalized case we do not know how to
decouple the action on the prior from the choice of the data when conditioned on the prior.



Mach Learn (2010) 78: 63–101 87

Let us first recall the conventional Bayes rule and rewrite it in matrix notation:

P (Mi |y) = P (Mi)P (y|Mi)

P (y)
, where P (y) =

∑

j

P (Mj )P (y|Mj),

diag (P (Mi |y)) = diag (P (Mi))diag (P (y|Mi))

tr (diag (P (Mi))diag (P (y|Mi)))
.

(9.1)

We now present and discuss the analogous Bayes rule for the generalized setting. At the
end of this section we present a list of all Bayes rules.

In the generalized Bayes rule we cannot simply multiply the prior density matrix with the
data likelihood matrix. This is because a product of two symmetric positive definite matrices
can be neither symmetric nor positive definite (see Fig. 4). Instead, we replace the matrix
multiplication with � operation:

D(M|y) = D(M) � D(y|M)

D(y)
, where D(y) = tr(D(M) � D(y|M)). (9.2)

Normalizing by the trace ensures that the trace of the posterior density matrix is one. In
both the conventional as well as the new Bayes rule above, the normalization constant is the
likelihood of the data. When the matrices D(M) and D(y|M) have the same eigensystem,
then � becomes the matrix multiplication. In the following subsections we derive the above
Bayes rules from the minimum relative entropy principle. For the conventional Bayes rule
the standard relative entropy between probability vectors is used, whereas the generalized
Bayes rule and the crucial � operation is motivated by the quantum relative entropy between
density matrices due to Umegaki (see e.g. Nielsen and Chuang 2000).

We visualize the conventional Bayes rule in Fig. 7. Repeated application of the rule
with the same likelihood makes the posteriors increasingly concentrated on the point with
maximum data likelihood P (y|Mi). Therefore this rule can be interpreted as a soft max-
likelihood calculation. Figure 8 demonstrates the generalized Bayes rule. There the posterior
gradually moves towards the eigenvector belonging to the largest eigenvalue of the data
likelihood matrix D(y|M). Thus the new rule can be interpreted as a soft calculation of the
eigenvector with maximum eigenvalue.

In Fig. 11 we depict a sequence of updates with the new Bayes rule when the data like-
lihood matrix is different in each iteration. Observe that based on the relative lengths of the
axes (eigenvalues) and the directions of the axes (eigenvectors) in the ellipse describing the
current data likelihood matrix, the posterior adjusts its axis lenghts and directions.

Other Bayes rules for our calculus are listed below. They all express one conditional in
terms of the corresponding reverse conditional.

BR1 D(B|A) = (IA ⊗ D(B)) � D(A|B) � (D(A) ⊗ IB)−1, where D(A) = trB((IA ⊗
D(B)) � D(A|B)).

BR2 D(b|A) = D(b)D(A|b) � D(A)−1, where D(A)
TP3= trB((IA ⊗ D(B)) � D(A|B)).

BR3 D(B|a) = D(B)�D(a|B)

D(a)
, where D(a)

TP2= tr(D(B) � D(a|B)).
This is the Bayes rule derived in Warmuth (2005) that was discussed above.

BR4 D(b|a) = D(b)D(a|b)

D(a)
, where D(a)

TP1= ∑
i D(bi )D(a|bi ).

The summation in the normalization factor proceeds over any orthogonal system bi .

All these Bayes rules can be easily derived as follows: first express the conditional on the
left i.t.o. the joint by applying the definitions of conditional probability from Sect. 7; then
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Fig. 7 (Color online) We apply the conventional Bayes rule 4 times, using the same data likelihood vector
P(y|Mi) and making the current posterior the new prior. At first, the posteriors are close to the initial prior
but eventually the posteriors focus their weight on arg maxi P (y|Mi). The conventional Bayes rule may be
seen as a soft maximum calculation. The initial prior is in red, the likelihood is in green and posteriors are in
blue

Fig. 8 (Color online) We depict several iterations of the generalized Bayes rule. The red ellipse depicts the
prior D(M), the green ellipse depicts the data likelihood matrix D(y|M), which is kept fixed on successive
iterations, and the blue ellipses depict posteriors D(M|y). The posterior density matrices gradually move
away from the prior and focus on the longest axis of the covariance matrix. The generalized Bayes rule can
be seen as a soft calculation of eigenvector with largest eigenvalue

apply these definitions again for expressing the joint in terms of the reverse conditional. For
example,

D(B|a)
CP2= D(B,a)

D(a)

CP3= D(B) � D(a|B)

D(a)
.

As was mentioned above, the new Bayes rule can be seen as a soft maximum eigen-
value calculation. We will now give an example that shows that its impossible to track
the maximum eigenvalue without changing the eigensystem. First, suppose that we have
a diagonal density matrix W = ∑

i ωieie
�
i and another diagonal matrix S = ∑

i σieie
�
i .

Then tr(WS) = ∑
i ωiσi and this means that by changing ωi we can easily focus on the
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Fig. 9 We plot many iterations of the conventional Bayes rule when the same data likelihood
(P (y|Mi)) = (.7, .84, .85, .9) is used in each iteration and the prior is (P (Mi)) = (.29, .4, .3, .01). For each
of the four models we plot the posterior probability as a function of the iteration number. Initially the posterior
curve with likelihood .85 overtakes the curve with likelihood .84, but eventually the curve with likelihood .9
takes over both. Note that the curve with the largest data likelihood looks like a sigmoid and the one with
smallest like a reverse sigmoid

Fig. 10 We plot many iterations of the generalized Bayes rule when the same data likelihood matrix D(y|M)

is used in each iteration. As the prior D(M) we choose the diagonalized prior diag((P (Mi)) of Fig. 9 on the
left and as the likelihood D(y|M) we choose U diag((P (y|Mi))U

T , where the eigensystem U is a random
rotation matrix. Let D(M|t) denote the posterior at iteration t when the fixed D(y|M) is used in all iterations.
The curves are the projections of this posterior onto the four eigendirections of D(y|M) as a function of t ,
i.e. u�

i
D(M|t)ui , where ui are the columns of U . The above plot is qualitatively similar to the left plot. The

curve corresponding to the largest eigenvalue of the data likelihood is again a partial sigmoid

high σi . Now suppose W is diagonal as before, but S has the Hadamard matrix eigensys-
tem. Hadamard matrices H are square n × n matrices that have ±1 elements and satisfy
the condition HH� = nI . Thus H√

n
is an orthogonal matrix. Let hi be the columns of this

orthogonal matrix derived from a Hadamard matrix and let S = ∑
i σihih

�
i . Entries of hi
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Fig. 11 (Color online) Sequence of Bayes updates with the new Bayes rule (9.2): from left to right, the prior
is in red; the first data likelihood matrix is below in green; the first posterior is above in blue, and so forth

are ± 1√
n

, therefore tr(eie
�
i hjh

�
j ) = 1

n
. Computing the trace we obtain:

tr(WS) =
∑

i,j

σiτj tr(eie
�
i hjh

�
j ) = 1

n
tr(W )tr(S) = tr(S)

n
.

This means that any diagonal density matrix W only “sees” the average of eigenvalues of S

and is unable to focus on the highest eigenvalue.

9.1 Deriving the conventional and generalized Bayes rule

In this section we show how to derive the conventional Bayes rule (9.1) and the generalized
Bayes rule for density matrices (9.2) by minimizing a tradeoff between a relative entropy
and an expected log likelihood. For two probability vectors x and y, the relative entropy is
defined as Δ(x,y) := ∑

i xi log xi

yi
. We use the convention that 0 log 0 := 0 which is justified

by limx→0 x logx = 0. It is well known that Δ(x,y) ≥ 0 and that Δ(x,y) = 0 iff x = y.

Theorem 3 Let the prior (P (Mi)) be any probability vector and the data likelihood
(P (y|Mi)) be any non-negative vector of the same dimension. Then

− logP (y) = inf
(ωi ) prob.vec.

Δ
(
(ωi), (P (Mi))

) −
∑

i

ωi logP (y|Mi),

and ω = (P (Mi)P (y|Mi)/P (y)) is the unique optimum solution.

Proof Let the support of a vector x be the set of all indices 1 ≤ i ≤ n s.t. xi �= 0 and denote
this set as s(x). For any probability vector (ωi), such that s((ωi)) ⊆ s(P (Mi))∩ s(P (y|Mi)),
we have

− logP (y) =
∑

i

ωi log
ωi

P (Mi)
︸ ︷︷ ︸

Δ((ωi ),(P (Mi)))

−
∑

i

ωi logP (y|Mi) −
∑

i

ωi log
ωi

P (Mi)P (y|Mi)/P (y)
︸ ︷︷ ︸

Δ((ωi ),(P (Mi )P (y|Mi)/P (y)))

.
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The precondition on the support of (ωi) assures that all three sums above are finite because
it avoids the case ωi log 0, when ωi > 0. Since the l.h.s. is a constant,

inf
(ωi ) prob.vec.

s((ωi )) ⊆ s(P (Mi )) ∩ s(P (y|Mi))

Δ((ωi) , (P (Mi))) −
∑

i

ωiP (y|Mi)

= sup
(ωi ) prob.vec.

s((ωi )) ⊆ s(P (Mi )) ∩ s(P (y|Mi))

−Δ((ωi) , (P (Mi)P (y|Mi)/P (y))) .

The sup clearly has ω = (P (Mi)P (y|Mi)/P (y)) as its unique solution and the inf remains
unchanged if the condition on the support of (ωi) is dropped. This gives us the statement of
the theorem. �

This theorem can also be proven using differentiation (see e.g. Zellner 1998; Kivinen and
Warmuth 1997; Singh et al. 2003). For the density matrix case this was done in Warmuth
(2005), Tsuda et al. (2005). We now prove the corresponding theorem for density matrices in
a different way. For two density matrices A and B , the quantum relative entropy is defined
as Δ(A,B) := tr(A(logA − logB)). There is a potential problem when some of the eigen-
values of the matrices are zero. However, we will now reason that this definition is justified
under the assumption 0 log 0 = 0 and Δ(A,B) is bounded iff range(A) ⊆ range(B).

The first term tr(A logA) becomes
∑

i αi logαi , where the αi are the eigenvalues
of A. This term is always finite. If B is eigendecomposed as

∑
i βibib

�
i , then the sec-

ond term tr(A logB) can be rewritten as
∑

i b
�
i Abi logβi . If range(A) ⊆ range(B), then

range(B)⊥ ⊆ range(A)⊥, where ⊥ denotes the orthogonal complement space. If βi = 0,
then bi ∈ range(B)⊥ and under our assumption on range(A) this also means that b�

i Abi = 0.
Therefore, for all i, s.t. βi = 0, the summand b�

i Abi logβi has the form 0 log 0 = 0. If on
the other hand, range(A) � range(B), this also means range(B)⊥

� range(A)⊥. The eigen-
vectors bi with zero eigenvalues form a basis for range(B)⊥ and therefore there exists some
bi s.t. b�

i Abi �= 0. This gives a summand of the form x log 0, with x �= 0, and this is infinite.
Notice that this discussion also means that

tr(A logB) =
{

tr(A log+ B) when range(A) ⊆ range(B),

−∞ otherwise.
(9.3)

As before the function Δ(A,B) is non-negative and equal zero iff both arguments agree
(e.g. Nielsen and Chuang 2000).

Theorem 4 Let the prior D(M) be any density matrix and data likelihood D(y|M) be any
symmetric positive definite matrix of the same dimension. Then

− logD(y) = inf
W dens.mat.

Δ(W ,D(M)) − tr(W logD(y|M)),

and W = D(M)�D(y|M)

D(y)
is the unique optimum solution.

Proof For any density matrix W s.t. range(W ) ⊆ range(D(M))∩ range(D(y|M)), we have

− logD(y) = tr(W (logW − logD(M))
︸ ︷︷ ︸

Δ(W ,D(M))

−tr(W (logD(y|M))

− tr(W (logW − (logD(M) + logD(y|M)/D(y)))).
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Since range(W ) ⊆ range(D(M)) ∩ range(D(y|M), tr(W logD(M)) and tr(W logD(y|M))

are both finite. Assuming that for any symmetric positive definite matrices W , A and B

tr(W (logA+ logB) = tr(W log(A�B)), when range(W ) ⊆ range(A)∩ range(B), (9.4)

the above equality would become

− logD(y) = Δ(W ,D(M)) − tr(W logD(y|M)) − Δ(W , (D(M) � D(y|M))/D(y)).

Since the l.h.s. is a constant,

inf
W dens.mat.

range(W ) ⊆ range(D(M)) ∩ range(D(y|M))

Δ(W ,D(M)) − tr(W logD(y|M))

= sup
W dens.mat.

range(W ) ⊆ range(D(M)) ∩ range(D(y|M))

−Δ(W , (D(M) � D(y|M)) /D(y)).

The sup clearly has the unique solution D(M)�D(y|M)

D(y)
and the inf remains unchanged if the

condition on the range of W is dropped. This gives us the statement of the theorem.

We still need to show (9.4). Since range(W ) ⊆ range(A) ∩ range(B)
OP1= range(A � B),

tr(W log(A � B))
(9.3)= tr(W log+(A � B))

(4.6)= tr(WP A∩B(log+ A + log+ B)P A∩B)

= tr(P A∩BWP A∩B︸ ︷︷ ︸
W

(log+ A + log+ B))

(9.3)= tr(W (logA + logB)). �
We conclude with a discussion of the relationship between the conventional Bayes rule

for probability vectors and the generalized Bayes rule for density matrices. Density matrices
are determined by a probability vector of eigenvalues as well as an orthogonal eigensystem.
An orthogonal system wi turns the prior density matrix D(M) into the probability vector
(tr(D(M)wiw

�
i )), which we call a pinching of D(M). Similarly the pinching of the data

likelihood matrix D(y|M) is the vector (tr(D(y|M)wiw
�
i )) ∈ [0,1]n. The idea is to express

our Bayes rule for density matrices as the conventional Bayes rule for the pinched priors
and likelihoods w.r.t. a certain eigensystem. That is, we want to be able to say that the
generalized Bayes rule is the conventional Bayes rule for the “best” pinching.

The above outline is essentially true, but we need to pinch in the log domain. With (9.3),
Property OP11 can be extended to

tr(A�uu�) = eu� logAu, for any unit u and symmetric positive definite matrix A. (9.5)

We call tr(A � wiw
�
i ) a remote pinching of A. Since its components satisfy tr(D(M) �

wiw
�
i )

OP10≤ tr(D(M)wiw
�
i ), the remote pinchings of D(M) must be normalized to form a

probability vector.
We can rewrite the argument of the optimization problem for the generalized Bayes rule

based on the eigendecomposition WωW� of the density matrix W :

Δ(W ,D(M)) − tr(W logD(y|M))

= tr(ωW�(logW − logD(M))W) − tr(ωW�(logD(y|M))W)
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=
∑

i

ωi(logωi − w�
i (logD(M))wi ) −

∑

i

ωiw
�
i (logD(y|M))wi

(9.5)=
∑

i

ωi(logωi − log tr(D(M) � wiw
�
i )) −

∑

i

ωi log tr(D(y|M) � wiw
�
i )

= Δ
(
(ωi ) ,

(
tr(D(M) � wiw

�
i )/ZW

)) −
∑

i

ωi log tr(D(y|M) � wiw
�
i ) − logZW ,

where the normalization ZW = ∑
j tr(D(M)�wjw

�
j ) does not depend on the eigenvalues.

By Theorem 3, the above is minimized w.r.t. ω when ω = (PW(Mi)PW(y|Mi)/PW(y)),
where PW(Mi) := tr(D(M) � wiw

�
i )/ZW is the normalized remote pinching of the prior

and PW(y|Mi) := tr(D(y|M)�wiw
�
i ) is the remote pinching of the data likelihood matrix.

With this optimum choice of ω, the minimization problem of the generalized Bayes rule
simplifies to

inf
WW�=I

− logPW(y) − logZW

= inf
WW�=I

− log

(∑

i

tr(D(M) � wiw
�
i )tr(D(y|M) � wiw

�
i )

)

OP15= inf
WW�=I

− log

(∑

i

tr((D(M) � D(y|M) � wiw
�
i )

)

OP10≥ inf
WW�=I

− log

(∑

i

tr((D(M) � D(y|M)wiw
�
i )

)

= − log tr(D(M) � D(y|M)).

The above inequality is tight iff W is an eigensystem of D(M) � D(y|M). We conclude
that the optimization problem for the generalized Bayes rule is optimized when W is an
eigensystem of D(M) � D(y|M) and the vector of eigenvalues ω is conventional posterior
derived from the normalized remote pinchings of the prior and the remote pinchings of the
data likelihood.

9.2 Chaining of the Bayes rule

The conventional Bayes rule can be applied iteratively to a sequence of data and various
cancellations occur. For the sake of simplicity we only consider two data points y1, y2:

P (Mi |y2, y1) = P (Mi |y1)P (y2|Mi,y1)

P (y2|y1)
= P (Mi)P (y1|Mi)P (y2|Mi,y1)

P (y2|y1)P (y1)
.



94 Mach Learn (2010) 78: 63–101

The normalization can be rewritten as:

P (y2|y1)P (y1) =
(∑

i

P (Mi |y1)︸ ︷︷ ︸
using (9.1)

P (y2|Mi,y1)

)(∑

i

P (Mi)P (y1|Mi)

)

=
∑

i

P (Mi)P (y1|Mi)P (y2|Mi,y1) = P (y2, y1). (9.6)

Analogously, by essentially applying the generalized Bayes rule (9.2) two times we get:

D(M|y2,y1) = D(M|y1) � D(y2|M,y1)

D(y2|y1)
= D(M) � D(y1|M) � D(y2|M,y1)

D(y2|y1)D(y1)
.

As in the diagonal case (9.6), the normalization can be rewritten into one term (by applying
TP2 twice and then the generalized Bayes rule (9.2)):

D(y2|y1)D(y1) = tr(D(M|y1) � D(y2|M,y1))tr(D(M) � D(y1|M))

= tr

(
D(M) � D(y1|M)

tr(D(M) � D(y1|M))
� D(y2|M,y1)

)

tr(D(M) � D(y1|M)

= tr(D(M) � D(y1|M) � D(y2|M,y1)) = D(y1,y2).

Finally as in (8.1), we can upper bound the data probability D(y1,y2) in terms of the
product of the expected variances for the two trials:

D(y2,y1) = tr(D(M|y1) � D(y2|M,y1))tr(D(M) � D(y1|M))

≤ tr(D(M|y1)D(y2|M,y1))tr(D(M)D(y1|M)).

9.3 Bounds

Recall the following conventional bound for the negative log-likelihood of the data i.t.o. the
negative log-likelihood of the MAP estimator:

− logP (y) = − log
∑

i

P (y|Mi)P (Mi)

≤ min
i

(− logP (y|Mi) − logP (Mi)). (9.7)

We will give analogous bound for density matrices. For this we need the following inequal-
ity: For any unit vector m and symmetric positive definite matrix A:

− logm�Am
OP10≤ − log tr(A � mm�)

(9.5)= −m�(logA)m. (9.8)

Using the fact that tr(A) ≥ m�Am, we can now prove an analogous MAP bound for the
generalized probabilities:

− logD(y) = − log tr(D(y|M) � D(M))

≤ min
m

(− logm�(D(y|M) � D(M))m)
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(9.8)≤ min
m

(−m� log(D(y|M) � D(M))m)

≤ min
m

(−m� logD(y|M)m − m� logD(M)m).

The last inequality becomes (9.4), when m ∈ range(D(M)) ∩ range(D(y|M)). Otherwise,
it holds trivially because −m� log(D(y|M) � D(M))m = +∞.

Intuitively, there are two domains: the probability domain and the log probability domain.
The conventional bound (9.7) can also be written in the probability domain:

P (y) ≥ max
i

P (Mi)P (y|Mi).

However for the generalized probability case, there does not seem to be a simple similar
inequality in the probability domain. Throughout the paper we always notice that the matrix
operations need to be done in the log domain.

In the conventional case P (y) is also upper bounded by maxi P (y|Mi). For the gen-
eralized case, the analogous formula is the following, where μi and mi are the eigenval-
ues/vectors of D(M) and m any unit direction:

D(y) = tr(D(y|M) � D(M))

≤ tr(D(y|M)D(M))

=
∑

i

μim
�
i D(y|M)mi

≤ max
i

m�
i D(y|M)mi

≤ max
m

m�D(y|M)m.

10 Summary of the probability calculus for density matrices

In this section we give a summary of all the rules of our calculus. The definitions are indi-
cated with := and at the end we summarize the justification for our choice of definitions.
Table 1 shows connections between different objects and the formulas that relate them.

10.1 Marginalization rules for joints of Sects. 5 and 6

MJ1 D(a) := tr(D(A)aa�) = a�D(A)a.
MJ2 D(A) := trB(D(A,B)).
MJ3 D(a,b) := tr(D(A,B)(a ⊗ b)(a ⊗ b)�) = tr(D(A,B)(aa� ⊗ bb�)).
MJ4 D(A,b) := trB(D(A,B)(IA ⊗ bb�)).
MJ5 D(a,b) = tr(D(A,b)aa�).

10.2 Conditional probability rules of Sect. 7

CP1 D(A|B) := D(A,B) � (IA ⊗ D(B))−1.
CP2 D(A|b) := D(A,b)

tr(D(A,b))
.

CP3 D(a|B) := D(a,B) � D(B)−1.
CP4 D(a|b) := D(a,b)

D(b)
.
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Table 1 A series of charts summarizing the different relationships for joints and conditionals. Each edge
references the formula stating the relationship. For symmetric cases only one formula is given and the corre-
sponding edges in the chart will have the same label

CP1 has the form: density matrix � inverse of a normalization. Below we reexpress the
other definitions in this unified form:

CP′2 D(A|b) = trB(D(A,B)(IA ⊗ bb�)) � trB((IA ⊗ D(B))(IA ⊗ bb�))−1.
CP′3 D(a|B) = trA(D(A,B)(aa� ⊗ IB)) � trA((IA ⊗ D(B))(aa� ⊗ IB))−1.
CP′4 D(a|b) = tr(D(A,B)(aa� ⊗ bb�)) � tr((IA ⊗ D(B))(aa� ⊗ bb�))−1.

10.3 Marginalization rules for conditionals of Sect. 7

MC1 D(a|b) = tr(D(A|B)�(IA⊗D(B))(aa�⊗bb�))

tr(D(B)bb�)
.

MC2 D(A|b) = trB(D(A|B)�(IA⊗D(B))(IA⊗bb�))

tr(D(B)bb�)
.

MC3 D(a|B) = trA(D(A|B) � (IA ⊗ D(B))(aa� ⊗ IB)) � D(B)−1.
MC4 D(a|b) = tr(D(A|b)aa�).
MC5 D(a|b) = tr((D(a|B)�D(B))bb�)

tr(D(B)bb�)
.

All the rules here except for MC4 require additional information for marginalization, which
was not necessary in the conventional case. See discussion of marginalization of conditionals
in Sect. 7.
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10.4 Theorems of total probability of Sect. 8

TP1 D(a) = ∑
i D(a|bi )D(bi ) for any orthogonal system bi of space B.

TP2 D(A) = ∑
i D(A,bi ) for any orthogonal system bi of space B.

TP3 D(A) = trB(D(A|B) � (IA ⊗ D(B))).

10.5 Bayes rules of Sect. 9

BR1 D(B|A) = (IA ⊗ D(B)) � D(A|B) � (D(A) ⊗ IB)−1, where D(A) = trB((IA ⊗
D(B)) � D(A|B)).

BR2 D(a|B) = D(a)D(B|a) � D(B)−1, where D(B) = trA(D(B|A) � (D(A) ⊗ IB)).
BR3 D(B|a) = D(B)�D(a|B)

D(a)
, where D(a) = tr(D(B) � D(a|B)).

BR4 D(b|a) = D(a|b)D(b)

D(a)
, where D(a) = ∑

i D(a|bi )D(bi ) and the summation is over any
orthogonal system bi .

10.6 Summary of justifications for the definitions

Note that only the rules MJ1–4 and CP rules are definitions. Everything else in our calculus
can be derived from these. MJ1 is justified by Gleason’s Theorem as discussed in Sect. 3.
Gleason’s Theorem also justifies MJ3, where the Kronecker product provides the natural
way to specify a joint unit (see discussion in Sect. 5). MJ2 is standard in quantum physics
and trB(D(A,B)) was shown to be a density matrix in Lemma 1. The rule is also compat-
ible with the conventional case as well as with the natural generalization of independence
discussed in Sect. 6. MJ4 is the natural definition of D(A,b) that satisfies MJ5 and is com-
patible with the conventional case.

We will outline how CP2 can be motivated as a quantum relative entropy projection. For
positive definite matrices A and B , we extend the definition of quantum relative entropy
as follows: Δ(A,B) = tr(A(logA − logB) + B − A). Note that this “unnormalized” rel-
ative entropy, coincides with the standard one when A and B have trace one. Now CP2 is
motivated as

D(A|b) = arg inf
W dens. mat.

Δ(W ,D(A,b)) .

CP3 is motivated analogous to the generalized Bayes rule (see Sect. 9):

D(a,B) = arg inf
W

Δ(W ,D(B)) − tr(W logD(a|B)).

CP1 can be motivated in a similar fashion, but now the variable is over the joint space (A,B):

D(A,B) = arg inf
W dens.mat.

Δ(W , IA ⊗ D(B)) − tr(W logD(A|B)).

CP1 also was previously used in Cerf and Adami (1999) to allow a suitable definition of
conditional quantum entropy. Finally, the last rule CP4 was chosen in analogy to the con-
ventional case. It also has an interpretation as two successive quantum measurements (see
Appendix).

Historically, we first justified the generalized Bayes rule BR3 based on the minimum
relative entropy principle (see Warmuth 2005 and Sect. 9). After that we chose definitions
CP1–CP4 to be compatible with this generalized Bayes rule.
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11 Conclusions

Density matrices are central to quantum physics. We utilize many mathematical techniques
from that field to develop a Bayesian probability calculus for density matrices. Intuitively,
the new calculus will be useful when the data likelihood D(y|M) has non-zero off-diagonal
elements, i.e. information about which components are correlated or anti-correlated. The
main new operation A � B first takes logs of the matrices adds the logs and finally expo-
nentiates. Any straightforward implementation of the � operation requires the eigendecom-
positions of the matrices, which are expensive to obtain. Throughout our work we notice
that the log domain seems to be more important in the matrix case.

Interestingly enough the � operation has also been employed in computer graphics for
combining affine transformation (Alexa 2002). Also the simulation of quantum computa-
tions based on the Lie Trotter Formula (Nielsen and Chuang 2000, Chap. 4.7) can be inter-
preted as applying the � operation to unitary matrices and not to symmetric positive definite
matrices as we do in this paper.

The main update in quantum physic is a unitary evolution of the current density matrix
A, i.e. A := UAU�, where U is unitary. For example, the main differential equation for
density matrices in quantum physics is the following version of the Schrödinger Equation
(Feynman 1972):

∂D(M|t)
∂t

= i(HD(M|t) − D(M|t)H ), where H is skew Hermitian.

The solution has the form

D(M|t) = exp(−itH )D(M|0) exp(itH ),

where D(M|0) is the initial density matrix. Since itH is skew Hermitian, both exponentials
are unitary. Thus the above update represents a unitary transformation of the initial density
matrix D(M|0). Such transformations leave the eigenvalues unchanged and only affect the
eigensystem. In contrast our generalized Bayes rule updates both the eigenvalues and eigen-
vectors, and the conventional Bayes rule can be seen as only updating the eigenvalues while
keeping the eigenvectors fixed. Therefore the Bayes rules are decidedly not unitary updates.

For the sake of completeness we now express the Bayes rules also as solutions to differ-
ential equations. In the conventional case, the differential equations are (1 ≤ i ≤ n):

∂ logP (Mi |t)
∂t

= logP (y|Mi) −
∑

j

P (Mj |t) logP (y|Mj).

The solution is

P (Mi |t) = P (Mi |0)P (y|Mi)
t

∑
j P (Mj |0)P (y|Mj)t

.

If we take the value P (Mi |0) as the prior P (Mi) then the expression for P (Mi |1) becomes
the conventional Bayes rule (9.1). There is a similar differential equation for the generalized
Bayes rule (for the sake of simplicity we assume that the prior D(M) and data likelihood
matrix D(y|M) are strictly positive definite):

∂ logD(M|t)
∂t

= logD(y|M) − tr(D(M|t) logD(y|M)).
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The solution has the form

D(M|t) = exp (logD(M|0) + t logD(y|M))

tr (exp (logD(M|0) + t logD(y|M)))

(4.1)= D(M|0) � D(y|M)t

tr (D(M|0) � D(y|M)t )
.

If we set D(M|0) to the prior D(M), then the expression for D(M|1) becomes the general-
ized Bayes rule (9.2). Notice again that the differential equations emphasize the log domain
and that the � operation appears in the solution.

At this point we have no convincing application for the new probability calculus. How-
ever, a similar methodology was used to derive and prove bounds for parameter updates
of density matrices that led to a version of Boosting (Tsuda et al. 2005) where the distri-
bution over the examples is replaced by a density matrix, an online variance minimization
algorithm where the parameter space is the unit ball (Warmuth and Kuzmin 2006), and an
on-line algorithm for Principal Component Analysis (Warmuth and Kuzmin 2008).

In this paper our parameters expressing the uncertainty are symmetric positive definite
matrices. However using essentially the EG± transformation (Kivinen and Warmuth 1997),
it has been shown recently that inference can be done with arbitrarily shaped matrices (War-
muth 2007). This leaves the strong possibility that the calculus developed here will general-
ize to arbitrary shaped matrices as well. In that case the elementary events are “asymmetric
dyads” uv� and the underlying decomposition is the SVD decomposition.

The new calculus seems to be rich enough to bring out some of the interesting phenomena
of quantum physics, such as superposition and entanglement. Maybe the new calculus can
be used to maintain “uncertainty” in quantum computation.

On a more technical note, we conjecture that for all non-decoupled joints D(A,B) there
is a one-to-one mapping to the conditionals D(A|B), and the EM-like algorithm given in
Sect. 7 converges to D(B), s.t. D(A,B) = D(A|B) � (IA ⊗ D(B)).

Finally, we will reason in a simple case that generalized probability space is more “con-
nected” and a clever algorithm might be able to exploit this. Assume zero is encoded as
the distribution (1,0) and one as the distribution (0,1). Moving from the zero distribution
to the one distributions can be done by lowering the probability of the first component and
increasing the probability of the second. As density matrices, zero and one would be

( 1 0
0 0

)

and
( 0 0

0 1

)
, respectively. Note that the eigensystem for both matrices is the identity matrix and

there is now a second way to go from zero to one that keeps the eigenvalues/probabilities
fixed but swaps the eigenvectors:

(
0 1
1 0

)(
1 0
0 0

)(
0 1
1 0

)

=
(

0 0
0 1

)

.
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Appendix: Quantum-mechanical interpretation of conditional probability D(a|b)

We will now show how to interpret the conditional probability D(a|b) in terms of two
quantum measurements. The two measurements will be performed one after another on
the joint density D(A,B) and D(a|b) will be a probability of outcome 1 for the second
measurement given the first measurement had outcome 1. First, we measure D(A,B) with
event IA ⊗bb�. Assume that we get outcome 1. Using the generalization of collapse rule for
events (see e.g. Nielsen and Chuang 2000), the successor density matrix can be computed
as follows:

D̂(A,B) = (IA ⊗ bb�)D(A,B)(IA ⊗ bb�)

tr((IA ⊗ bb�)D(A,B)(IA ⊗ bb�))
.

The second measurement consists of measuring the updated joint with event aa� ⊗IB. Now
the probability for getting outcome 1 is computed as:

tr(D̂(A,B)(aa� ⊗ IB)) = tr((IA ⊗ bb�)D(A,B)(IA ⊗ bb�)(aa� ⊗ IB))

tr((IA ⊗ bb�)D(A,B)(IA ⊗ bb�))

KP2+cycle= tr(D(A,B)(aa� ⊗ bb�))

tr(D(A,B)(IA ⊗ bb�))
= D(a,b)

tr(D(A,B)(IA ⊗ bb�))
.

The denominator can be simplified using partial trace properties:

tr(D(A,B)(IA ⊗ bb�))
PT2= tr(trA(D(A,B)(IA ⊗ bb�)))

PT3= tr(trA(D(A,B))
︸ ︷︷ ︸

D(B)

bb�) = D(b).

Therefore the probability of outcome 1 on the second measurement (given the first outcome
was 1) is:

tr(D̂(A,B)(aa� ⊗ IB)) = D(a,b)

D(b)

CP4= D(a|b).
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