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We study the problem of parallel computation of a schedule for a system of n
unit-length tasks on m identical machines, when the tasks are related by a set of
precedence constraints. We present NC algorithms for computing an optimal sched-
ule in the case where m, the number of available machines, does not vary with time
and the precedence constraints are represented by a collection of outtrees. The
algorithms run on an exclusive read, exclusive write (EREW) PRAM. Their com-
plexities are O (log ) and O ((log n)?) parallel time using O (n%) and O (n) processors,
respectively. The schedule computed by our algorithms is a height-priority schedule.
As a complementary result we show that it is very unlikely that computing such a
schedule is in NC when any of the above conditions is significantly relaxed. We prove
that the problem is P-complete under logspace reductions when the precedence
constraints are a collection of intrees and outtrees, or for a collection of outtrees when
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the number of available machines is allowed to increase with time. The time span of
a height-priority schedule for an arbitrary precedence constraints graph is at most
2 — 1/(m — 1) times longer than the optimal (N. E. Chen and C. L. Liu, Proc. 1974
Sagamore Computer Conference on Parallel Processing, T. Fend (Ed.), Springer-
Verlag, Berlin, 1975, pp. 1-16). Whereas it is P-complete to produce the classical
height—priority schedules even for very restricted precedence constraints graphs, we
present a simple NC parallel algorithm which produces a different schedule that is
only 2 — 1/m times the optimal. ~© 1986 Academic Press, Inc.

1. INTRODUCTION

One of the main issues in the theory of parallel computation is to classify
problems with respect to the class NC, the class of problems that are solvable
in polylog time using polynomial number of processors. While an NC algo-
rithm is sufficient in order to prove that a problem is in NC, it is much harder
to show directly that a problem does not lie in this class. Instead, one usually
proves that the problem is P-complete under logspace reductions. The class
NC is closed w.r.t. logspace reductions. If a P-complete problem was in NC,
then all problems in P would have an NC solution, which is very unlikely
[C83]. Thus, by proving that a problem is P-complete under logspace reduc-
tions, one essentially shows that this problem is outside of the class NC.

Our aim is to explore the border line between the class NC and the class
P-complete. We concentrate on the fundamental problem of scheduling a set
of n unit-length tasks subjected to some precedence constraints which are
presented by a directed acyclic graph. When every task in the precedence
graph has at most one incoming (resp. outcoming) edge, we say that the graph
is an outforest (resp. inforest). The tasks are scheduled on a system of
identical parallel machines. A profile indicates the number of machines avail-
able at any time slot. If the number of machines is the same for every time
slot we say that the profile is straight (precise definitions are given in the next
section).

The classical schedule considered in the literature is the height—priority
schedule, in which tasks are chosen according to their height in the pre-
cedence graph. Height—priority schedules are optimal for straight profiles in
the case where the graph is an inforest [H61] or an outforest [B81; DW85a].
It is easy to find a height—priority schedule in O (n log n) sequential time: Fill
the slots in increasing order; keep track of the set of tasks of depth zero, i.e.,
the tasks that are candidates to be scheduled in the next slot; pick tasks
according to highest height using a priority queue. Surprisingly, there are
even linear time algorithms for finding a height—priority schedule for inforests
[BG77]. In the case of outforests one can easily design a linear algorithm
using the notion of Elite and Median introduced in [DW85a]. This leads to
the interesting question of computing optimal schedules in polylog parallel
time. Our first result is an NC algorithm to obtain an optimal height—priority
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schedule for a given outforest and a straight profile. To obtain an optimal
schedule for an inforest and a straight profile we reverse the precedence graph
to an outforest and apply our algorithm.

It seems that to be able to construct a height—priority schedule in parallel
we need to predict the remaining graph at various times. This might be hard
to do in polylog time because of the sequential nature of the precedence
constraints. In the case of outforests and straight profiles we circumvent this
difficulty (Section 3); we assign to every task an integer release time and
deadline and then drop the precedence constraints and find a certain schedule
in which the new release times and deadlines are not violated. The release
times and deadlines are chosen such that the obtained schedule does not
violate the precedence constraints given by the outforest. The release times
and deadlines are related to the depths and heights of the tasks, respectively,
and these can be computed using an Eulerian path of the outforest
[TV85; V85] in O(log n) parallel time using O(n) processors on an
EREW PRAM.

Finding a schedule in which the release times and deadlines are not violated
is equivalent to finding a perfect matching for a convex bipartite graph and
vice versa. These problems can be solved in O ((log n)?) parallel time using
n processors [DS84] on an EREW PRAM. In Section 5 another algorithm is
presented for solving the same problems; it runs in O(log n) parallel time
using O (n?) processors on an EREW PRAM.! Our algorithm finds a perfect
bipartite matching (resp. release-time deadline schedule) if one exists. Note
that the algorithm of [DS84] also works if there is no perfect matching and
finds a maximum cardinality matching in that case. We reduce optimal sched-
uling of an outforest to finding a certain release-time deadline schedule. The
reduction will guarantee that such a schedule (perfect matching) always
exists. Our O (log® n) algorithm improves the time bounds of several other
scheduling problems presented in [DS84] by a factor of log n.

This far we have assumed the profiles to be straight. In [DW81] it was
shown that height—priority schedules are also optimal for outforests and
nonincreasing profiles (i.e., the number of machines does not increase with
time). The reduction of Section 3 and the algorithm of Section 5 can be
adapted to the case of optimal scheduling of outforests on nonincreasing
profiles. The complexity of the problem is sharply changed when we consider
the complementary case, that is, outforests and nondecreasing profiles. In that
case height—priority schedules are no longer optimal (see Fig. 1 and Table I)
and even finding a schedule which is no longer than the shortest
height—priority schedule is NP-hard [Wa81; M81]. Instead of finding a
height—priority schedule of minimum length one can ask for finding some

"Less efficient algorithms have recently been presented in [HM86]: O(log n) time and n*
(resp. n*) processors for inforests (resp. outforests).
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FiG. 1. An outforest precedence graph. (The edges are directed downwardly.)

height—priority schedule. In Section 6 we prove that even this problem is
logspace complete for P.

Our P-completeness result implies that finding the lexicographically first
schedule or a greedy schedule in which tasks are always chosen according to
maximum weight are also P-complete. Note that these new requirements of
the schedule are much more restrictive than scheduling according to height.
They lead to P-completeness even if the profile is straight and the precedence
graph is an outforest. Another path that leads to P-completeness results is to
allow more general precedence graphs. For example, to find a height—priority
schedule for straight profiles and opposing forests (unions of inforests and
outforests) or level orders is P-complete (Section 6). Finding a schedule
which is no longer than the shortest height—priority schedule is again NP-hard
for these cases [Wa81; M81]. Note that if the number of processors is con-
stant then finding an optimal schedule for the same cases is polynomial
[GI83; DW85b].

In the case of arbitrary precedence graphs and straight profiles with m
machines it is not known how to find an optimal schedule in polynomial time
even if m is constant. The case where m is a variable of the problem instance
is NP-hard as mentioned above. Only the case m = 2 is known to have a

TABLE 1
A HEIGHT-PRIORITY SCHEDULE (NONOPTIMAL)
FOR THE OUTFOREST OF FIG. 1 AND
THE NONDECREASING PROFILE

Slot 0 1 2 3 4 5 6

P 1 2 4 6 9 12 | 15
P, 3 5 7 10 | 13
P, 8 11 | 14

m(slot) 1 2 3 3 3 3 3

Note. Starting with task 3 in the slot zero gives a
schedule of length 6, which is optimal.
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polynomial (in fact linear) sequential solution [Ga82], and recently has been
shown to be in NC [HM85].

Height—priority schedules are used to approximate optimal schedules of
arbitrary precedence graphs. The lengths of the height—priority schedules are
no longer than 4/3 times the optimal if m = 2, and 2 — 1/(m — 1) times if
m = 3 [CL75]. Unfortunately producing a height—priority schedule is P-
complete even for very restricted precedence graphs (Section 6).
Height—priority schedules are a special case of greedy schedules which are by
a factor of 2 — 1/m from optimal [Gr69].

For large m the greedy heuristic has essentially the same performance as
the height—priority heuristic. Greedy schedules seem to be inherently se-
quential. But in Section 4 we present a simple NC algorithm which approx-
imates the optimal schedule by the same factor as the greedy heuristic. The
algorithm produces a nongreedy schedule: first all tasks of depth O are sched-
uled, then starting with a new slot all tasks of depth 1, and so forth.

It remains open whether there are approximation algorithms in NC which
perform as well as the height—priority heuristic or better.

2. PRELIMINARIES

A scheduling? problem is defined by a directed acyclic graph G and a
profile w. The graph G specifies the precedence constraints among the n tasks,
which are the vertices of the graph. A directed path from task x to task y in
G implies that the execution of task y cannot begin before task x is completed.
Processing each task requires one unit of time.

The profile w is a function from N, into N, where w (i) is the number of
machines available at the ith time slot (the interval [i, i + 1)). If a profile has
only one value, m, then it is called straight and denoted by the letter m.

A schedule s for a graph G and a profile u is a function from the vertices
of G onto an initial segment {0, . . . , I — 1} of Ny, such that:

(1) |s7'(r)| = u(r), forall rin{0, . .., 1 — 1}
(2) if y is a successor of x in G, then s(x) < s(y).

A task x starts to be executed at time s(x) and finishes one time unit later. We
say that task x is scheduled in slot s (x) and that slot r has u(r) — |s7'(r) | idle
periods; | denotes the length of the schedule s.

A minimum length schedule is called optimal. A schedule is greedy if the
maximum number of tasks is scheduled at every slot, i.e.,

(3) |s7(k)| < m(k) implies that every y s.t. s(y) > k is a successor of
some vertex z in s~'(k).

2Qur definitions are similar to the ones given in [M81].
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A priority q is a function from the set of tasks into Ny. A schedule s is
a g-priority schedule if vertices of higher priority are preferred over vertices
of lower priority. Among the vertices of the same priority ties are broken
arbitrarily. A g-priority schedule has the following additional property (note
that (4) implies (3)):

(4) s(x) > s(y) and g(x) > q(y) imply that x is a successor of some
vertex z with s(z) = s(y).

For example, we can use the height or the depth of the vertices as a priority
function. The height h(x) (resp. depth p(x)) is the length of the longest path
starting (resp. ending) with x. Note that according to this definition vertices
which do not have any successors (resp. predecessors) have height (resp.
depth) zero. Note that if the priority is an injective function then the corre-
sponding schedule is unique. Clearly, there is usually more than one height—
and depth—priority schedule.

For any graph G or any set of tasks 7, £(G) and h(T) denote maximum
heights of the vertices of G and 7, respectively. The height of the empty graph
and set is defined to be zero. The definitions for depth are generalized in a
similar fashion.

A graph G is an outforest (resp. inforest) if every vertex has at most one
immediate predecessor (resp. immediate successor). Note that our definition
assumes no transitive edges in the representations for inforests or outforests.

The model of parallel computation we use is the weakest shared memory
model—the Exclusive Read Exclusive Write (EREW) PRAM. In this model
we have a collection of processors (RAMs) with access to a shared memory.
In a single EREW-PRAM step, a processor may perform some internal
computation or access (read or write) one memory cell. Each memory cell is
accessed by at most one processor at each step.

3. SCHEDULING OUTFORESTS AND THE RELEASE-TIME DEADLINE
SCHEDULING PROBLEM

In this section we describe the reduction that leads to the polylog parallel
time algorithms discussed later in the paper. A unit-length scheduling prob-
lem with release times and deadlines is given by a set T of n unit-length tasks,
s.t. every task x has a nonnegative integer release time r(x) and a positive
integer deadline d(x). The tasks have to be scheduled on m machines, s.t.
every task is executed during its release time deadline interval. A schedule s
for T is a function that maps T into Ny, s.t.:

(1) rx) =s(x) =dx — 1, for all x in T, and
(2) |s~'(k)| = m, for k in No.

A schedule for T can be sequentially obtained as follows [J55]: Scan the
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slots in increasing order and among all the unscheduled tasks that were
released at the current slot or before, schedule the task with the earliest
deadline. Always put as many tasks as possible at each slot. Ties among tasks
with the same deadline are broken arbitrarily. The produced schedule is called
ED-schedule (Earliest-Deadline-schedule).

The produced schedule has the Earliest-Deadline-Property given below.

DEFINITION. An ED-schedule is a schedule s in which for any two tasks x
and y and k = 1:
(1) if s(x) = kand |s7'(k — 1)| < m, then r(x) = k;
(2) s(x) < s(y) and d(y) < d(x) imply that r(y) > s(x).
A release time and a distinct deadline are assigned to every task such that

the corresponding unique ED-schedule is a height—priority schedule for the
outforest and in this schedule the precedence constraints are not violated.

Let 77 be an Eulerian path of the outforest (see Fig. 2). Number the tasks
according to their order on the Eulerian path. Let L be a list of the vertices
of G sorted according to nonincreasing height where vertices of the same
height are ordered according to their Eulerian path numbering. For any task
x define

r(x) :==pk) (its depth);
d(x) := n + the index of x in list L.

o R

2,1
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3
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FIG. 2. Example of an Eulerian Path. Straight lines denote edges (directed downwardly). The
lines with arrows denote the Eulerian Path.
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Note that if £ (x) > h(y), for some vertices x and y, then d(x) < d(y). The
distinct deadlines have the following additional property, which is essential
for the reduction:

For any tasks x, x’, y, y', s.t. x’ is an immediate successor of x of height
h(x) — 1 and y’ is a successor of y,

dix) <d(y) > dx") <d(y').

Note that the deadlines are large enough that there always exists a schedule
that does not violate the release times and deadlines. In the next section we
show how to compute r(x) and d(x).

THEOREM 3.1. For any outforest G, the ED-schedule of the derived
release-time deadline problem does not violate the precedence constraints of
the outforest G.

Proof. Let s be an ED-schedule of the derived release-time deadline
problem. Let k be the smallest slot, i.e., interval [k, k + 1], that contains
tasks y and y’ s.t. y’ is a successor of y. Clearly, r(y') < k and thus
r(y) < k — 1. It follows that y was available to be scheduled at slot k — 1.
Since y was not scheduled at slot k — 1, we know by the definition of
ED-schedule that s '(k — 1) contains m tasks, all of which have deadlines
smaller than d(y). This implies that their heights are at least 4(y), where
h(y) > 0. Each task x in slot k — 1 has an immediate successor x’ of height
one less than x for which according to the above property d(x’) < d(y’).
Clearly, x' is released at slot k, since x was scheduled in slot k¥ — 1. There
are m such tasks with a deadline smaller than d(y'), because slot k — 1
contains m tasks. We conclude that y’ should not be scheduled in slot k,
which is a contradiction. =

We complete this section by showing that the ED-schedule is a
height-priority schedule of the outforest; this implies the optimality of the
ED-schedule [B81; DW85a].

THEOREM 3.2.  The derived ED-schedule is a height—priority schedule for
the given outforest G.

Proof. Let A be the last nonempty slot of the ED-schedule s. For any slot
k(0 <k = A) let Z, be the set of all tasks of depth zero in the outforest
induced by the vertices of s !(k, . . . , A). Similarly, let R, be the set of all
tasks of s7!(k, . . ., A) that are released at time k. The factthe r(-) = p(-)
and the previous theorem assure that Z, C R;. If |R,| =< m then s™'(k) = R;.
Otherwise s~!(k) consists of m tasks with the m smallest deadlines. The
definition of deadlines implies that s~!(k) is a set of m highest tasks of R;. The
previous theorem guarantees that s™!(k) C Z;, which completes the proof of
the theorem. ™



SCHEDULING WITH PRECEDENCE CONSTRAINTS 561

4. COMPUTING THE RELEASE TIMES AND DEADLINES

The release times (depth) and deadlines (height) are computed on an
EREW PRAM using an Eulerian path of the given outforest (a generalization
of an Eulerian path on an outtree). The Eulerian path for outtrees was first
used in [TV85; V85] for computing various tree functions. The algorithms
require O (log n) time and use O (n) processors. The computation of the depth
was given in [V85]. Computing the height is very much related to computing
High in [TV85; V85]. We present a slightly simpler procedure for computing
the height.

The input to the scheduling problem consists of m, the number of machines
available at any time slot, and E,, the list of nontransitive edges that define
the outforest (see Fig. 2 and Table II). Denote an edge from task x to task y
by (x, y) and assume that E, is sorted according to the first entry of each edge,
i.e., all outgoing edges of each vertex are grouped together. Note that if E,
does not have this form, then it can be rearranged using a parallel bucket sort
[GW84].

The algorithm is composed of several stages. We will present each stage
and its complexity. Recursive Doubling [Wy79] is one of the common tech-
niques in parallel algorithms. The aim of the algorithm is to compute an
associative function for all prefixes of the linked list. For example, Recursive
Doubling can be used to sum up the values along each prefix of the linked list.
We make use of the Recursive Doubling idea at several places in our algo-
rithm. Therefore, we first describe it as a general module. For this algorithm
it is not necessary that the elements of the list appear consecutively in the
storage. If the place of each element is known in advance then there are
algorithms that compute all prefixes O (log n) time using O(n) operations
[Sc80; BK82; Sn86] as opposed to O (n log n) for the algorithm below.

The Recursive Doubling Algorithm

Assume that the input to the Recursive Doubling Algorithm is given by a
linked list of n elements, and to each one we dedicate a processor. For
convenience, let i be the processor dedicated to the ith element of the linked
list. At the beginning every processor knows its successor in the linked list.
Let NEXT be the vector describing the order of the linked list, i.e., NEXT(p)
is p’s successor. The value of NEXT(p) equals NIL when p is the last
processor of the linked list. Let /(p) be p’s initial value at the beginning of
the algorithm. Again for convenience, our algorithm computes an associative
function F of all suffixes of the list instead of all prefixes. Examples for the
function F are the sum or the maximum. The vector V[1, . .., n] will
contain the final values of the processors at the end of the algorithm.
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DOUBLING (F, I, NEXT; V)
V(p) := 1(p)
NEXT(p) := LINK(p)
(*Each processor p performs the following loop:*)
WHILE LINK (p) <> NIL DO
V(p) := F(V(p), V(LINK(p)))
LINK(p) := LINK(LINK(p))
ENDWHILE

THEOREM 4.1 [Wy79]. The Doubling Algorithm terminates after
[log, (n — 1)] iterations of the loop. There is neither read conflict nor write
conflict in the algorithm. Let V(p) be the value of V(p) after the kth loop and
denote r, =p — 1 + min (n, 2Y. If F is an associative function then
VKp) = FU(p), IINEXT(p)), . . . , IINEXT"™*(p))).

The Eulerian Path

The two complex tasks we face are how to find the depth and the height
of the vertices in the outforest. For the sake of simplicity we assume that the
outforest consists of only one tree. To get this we can add a dummy root, say
r, such that the outforest on (n — 1) vertices becomes an outtree of n vertices.
This can be done by first identifying the roots of the outforest, then using the
Doubling Algorithm to order and index them [Wy79], and finally adding the
extra edges to the list. Altogether creating the dummy root will cost O (log n)
time using O (n) processors. For the rest of the paper we assume that the
precedence graph is an outtree.

The Eulerian Path of the outtree consists of 2n — 1 edges (see Fig. 2).
Every edge (i, j) is traversed forwardly, i.e., from i to j, and backwardly,
i.e., from j to i. For every edge (i, j) we create a back edge [j, i]. We also
add a dummy back edge [1, *] which will be the last edge of the Eulerian
Path. Every edge is tagged to remember whether it is an original edge or a
back edge. We merge E, with the list of back edges, s.t. the resulting list E
is sorted according to the first entry of each edge except for the fact that the
back edges [i, j] appear at the end of all original edges (i, - ) (see Table II).
This can be done in O (log n) time using O (n) processors, using a merging
algorithm that simulates a merging network [K72]. Assume that we are given
one processor for every edge in E.

To establish the Eulerian Path we need to determine the next edge NEXT][e]
for every edge e of E. We make use of two vectors F(1, ..., n) and
L(1, ..., n), where E(F(x)) (resp. E(L(x))) is the first (resp. last) edge
starting with x in E (see Table II). The vectors F and L can be constructed in
constant time. Note that E(L(i)) is always the back edge of the form [, - ];
moreover, if i is a leaf in the outtree, then F(i) = L(i). The following
procedure uses F and L to create the vector NEXT (see the example of Fig.
2 and Table II).
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EULERIAN PATH (E, F, L; NEXT)
each processor p performs:
IFE(p) = (x, y), i.e., it is not a back edge THEN
NEXT(E(p)) := E(F(y))
NEXT(E(L(y))) := E(p + 1)
ENDIF

Observe that since processors of back edges do not read and write, there are
no read and write conflicts in the above procedure.

LEMMA 4.1. The vector NEXT constructed by the above algorithm is an
Eulerian Path, on the outtree described by the array E.

To determine the deadlines of the tasks we need to know the index Q (e)
for every edge e of the Eulerian Path, i.e., Q(e) = k if e is the kth edge of
the path. We first index the edges backward using the Doubling Algorithm
with the parameters

Fx,y)=x+y

IE(p) =1 (for all edges of E)

NEXT is given by the Eulerian Path.

Let V be the vector obtained by the Doubling Algorithm using the above F
and I. Then Q(i) = 2n — V(F (i)). Observe that if y is a successor of x then

QF () = Q(F(y) = 2L(y) = 2LK).

LEMMA 4.2. The vectors V and Q can be computed in O (log n) time using
O (n) processors.

Evaluating the Depth

Our next task is to compute the depth of every vertex in the outtree. To get
this we again make use of the Doubling Algorithm with the parameters

Flx,y)=x+y

-1 if E(p) is an original edge

IE(p) =9 0 ifE[p]=1[1,*]
+1 if E(p) is a “back” edge other than [1, *]

NEXT—from the Eulerian Path.
Let V be the vector obtained by the Recursive Doubling Algorithm. Rename
the vector V with P.

- LEmMMA 4.3.  For every v, P(L(v)) is the depth of vertex v in the outtree
described by E. The vector P can be computed in time O (log n) using O (n)
processors.

Note that if E(p) is an edge that starts at x then P(p) = p(x).
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Evaluating the Height

The evaluation of the heights is the most complex part of our algorithm.
The basic observation that enables us to compute the heights is the following
lemma.

LEMMA 4.4. For every vertex v

h(v) = max  (p(x),
x € succ (v)

where succ(v) is the set containing v and all its successors (not only immedi-
ate ones).

Define R(x) = [Q(F(x)), QFx)) + 1, ..., QL (x)]. Let H(1, . . .,
n) be the vector for the heights, i.e., the vector we want to compute. Lemma
4.4 can be restated as:

For every vertex v,

H(v) max (P(p)).

" 0(p) ERW)

To find a maximum among some linked list it is enough to use the Doubling
Algorithm with the function max. In our case it is not so simple, because we
have to compute the maximum over all ranges R (x) in parallel. In the rest of
the section we describe a way to do this.

First we need to rearrange the array E and the vector P in an increasing
order according to the vector Q. Let E’ and P’ be the resulting vectors, i.e.,

E'(x) = E(Q(x) and P'(x) = P(Q(X)).
Similarly define
F'() =QFX), L'y = QLK) and pk)=F'(x) ~L'(x) + 1.

Note that the components of R (x) appear consecutively in E’.
Define the set of NODE entries in E’ to be

NODE = {p | F'(x) = p, for some task x}.

All the above vectors and sets can be constructed from the original ones in
constant time. In the following algorithm all processors behave as in the
regular Doubling Algorithm. The processors of the set NODE are making
extra calculations and at the right moment they read another value not accord-
ing to the Recursive Doubling process. This additional value will enable
p € NODE to find A (x) for which F'(x) = p.
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Computing the height is a special case of computing values High in [TV85]
and [V85], and vice versa. In both cases we compute maxima over certain
intervals of an array. In [TV85] and [V85] each interval is decomposed into
log n subintervals. The High value is the maximum over the log » maxima
of the subintervals. We decompose into only two subintervals.

Algorithm Height

Comment. The current value of p will be VALUE(p). To avoid read
conflicts we keep a copy of that value in DUPVAL(p).

processor 2n — 1: LINK(2n — 1) = NIL

processor p # 2n — 1: LINK(p) = p + 1

every processor: VALUE(p) = P'(p)
DUPVAL(p) = VALUE(p)
ITERATION(p) = 0

p € NODE: CRITIC(p) = [log (p(x) — 1)], where
E'(p) =(x, )
A(p) = p(x) — 29RTCP — |
every p: WHILE LINK(p) # NIL DO
p € NODE: IF ITERATION(p) = CRITIC(p) THEN

H(x) = MAX(VALUE(p), DUPVAL
(p + A(p))), where E'(p) = (x, *)

ENDIF
every p: ITERATION(p) = ITERATION(p) + 1
VALUE(p) = MAX(VALUE(p), VALUE

(LINK(p)))

DUPVAL(p) = VALUE(p)
LINK(p) = LINK(LINK(p))

ENDDO
ENDHEIGHT

LEMMA 4.5. There are no read or write conflicts in Algorithm Height and
the Algorithm Height computes the correct heights in time O (log n) using
O (n) processors.

The proof is based on the fact that the ranges of the NODE processors are
nested, therefore no two of them will need to access the same cell concur-
rently. ®m

Evaluating the Deadlines

To get the list L (defined in the previous section) we sort the vertices
according to the tuple (—H (x), Q (x)). This is done using a parallel bucket sort
[GW84] in O(log n) time using O(n) processors. Given L, it is easy to
compute the deadlines, i.e., d(x) = n + the index of x in L. Note that the
release time of a task equals its depth.
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5. THE RELEASE-TIME DEADLINE SCHEDULING ALGORITHM

We present an algorithm that runs in O (log n) parallel time and uses n?
processors. The algorithm produces a schedule that does not violate the
release times and deadlines if one exists. The reduction of Section 3 guaran-
tees the existence of such a schedule. Our algorithm produces a particular
schedule, the ED-schedule, since this schedule corresponds to the
height-priority schedule of the original outforest.

Finding a valid schedule for the release-time deadline scheduling problem
is equivalent to finding a perfect matching in a convex bipartite graph. The
latter problem was solved in [DS84] in O (log® n) parallel time using O (n)
processors. If no perfect matching exists then the algorithm of [DS84] pro-
duces a matching of maximum cardinality.

Assume that the tasks are given in an array L which is sorted lexi-
cographically on the tuples (r(x), d(x)). The release-time deadline scheduling
problem we need to solve in this paper is derived from scheduling outtrees;
in this case all the values of the deadlines and release times fall into a small
range and therefore a parallel bucket sort can be used to obtain L in O (log n)
time using O (n) processors [GW84].

We now describe how to find a schedule in O (log n) parallel time using
O (n?) processors given the sorted list L. Outline of the algorithm:

Step 1. Make n copies of the array L using a binary tree schema. At each
phase the number of copies is doubled. A single copy of L can be copied in
constant time using n processors. Thus, the whole process can be done in
log n steps using n* processors.

Step 2. Dedicate n processors and a copy of L to every task x. Determine
s(x), where s denotes the ED-schedule. This step is more involved. Several
parallel prefix computations are used. We first develop some notation and
theory.

We need to determine s(x) for every task x. Let us concentrate on a
particular task x. Denote by B, the set {y | d(x) < d(y) or d(x) = d(y) and
y appears before x in L }. The following theorem shows how to determine s (x).

THEOREM 5.1.  For a given task x, let S, be an ED-schedule for B, and let
k be the minimal slot with an idle period in S, s.t. k = r(x). Then, s(x) = k.

Proof. An ED-schedule for the tasks of L can be produced by the follow-
ing sequential algorithm [J55]: scan the slots in an increasing order and fill
each slot with the leftmost task of L which is released. Let k be the slot s (x).
The proof follows from the fact that s~'(r(x), . . . , kK — 1) contains only
tasks of B,. ®

To find the minimal slot k which has an idle period and k = r(x), it is
sufficient to know the number of tasks in each slot of S,. These numbers can
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be found from the following simpler scheduling problem: Let B, be the set of
tasks in B, with the same release times and the deadline d(x) =
max ({d(x) | x € B,}).

THEOREM 5.2. Let S,(S,) be an ED-schedule for B,(B,). Then for every
i 8@ ] =[5 @)].

Proof. All ED-schedules of B, have the same number of tasks in each
slot. It is easy to see that S, is an ED-schedule for B,. ®

In Step 2 of the algorithm we dedicate n processors and a copy of L to each
task x. For every task y we can determine in a constant number of parallel
steps its inclusion in B,. By a simple prefix computation we can find the
number of tasks before y in L which are in B, . Therefore we can eliminate all
tasks in L that are not in B, in O (log n) time and obtain the sublist L, of L
containing the tasks in B, .

Let k be the number of distinct release times appearing in L, and r;,
1 =i = k, be their values, where r; < r,;,. Define r,;; = r, + 1. The tasks
of B, which have a release time in the interval [r,, r,), for | =p <
q =< k + 1, are partitioned into two sets according to where they appear in
S. w.r.t. the interval [r,, r,):

IN,,={ylr, =r(y <r,and S.(y) <r,}
and
OUT,, ={y|r =r(y) <r,and S,(y) = r,}.

The value i, , denotes the number of periods in the interval [r,, r,) that are
not occupied by a task of IN, ;: i, , = m(r, — r,) — |IN,,|. Given the
values of iy , it is easy to find s(x).

Step 2 (computing s (x)).

(2.1) Find B,.
(2.2) Compute i; , for 1 =p <k + 1.
(23) l; = il,p+1 - il,p for 1 = p = k.
(2.4) Find the minimal p for which r, = r(x) and i, > 0.
(2.5) s&) = rpe — [ip/m].
The more complex part of the above algorithm consists of computing the
ir,,. Let j, , = |OUT, ,|. The following recurrences hold.

THEOREM 5.3. For 1 =p <gq <t =k + 1, given i, 4, ig:, jpq> and
Ja,e» then

Ip,t = lp,q + Max(ig; = jp.q, 0)
and

jp,t = jq,t + max(jp,q - iq,t’ 0).
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Proof. The equalities follow from the fact that j, , tasks with release
times in the interval [r,, r,) are candidates to be scheduled in the i, , idle
periods of the interval [r,, r,). ®

Theorem 5.3 implies a way to compute i, , via a parallel prefix com-
putation:

NEXT(p) = p — 1, I1<p=k+1
I(P) = (ip,p+19jp,p+1)9 1 = p = k,
F(G,j), @', j") = (i + max(i’ = j, 0), j' + max(j — i’, 0)).

After running the Recursive Doubling algorithm V(p) will be (i;,p, j1,,)-

It remains to be shown that we can find i, ,+, and j, ,+,. Let n, be the
number of tasks in B, with release time r,. All these tasks appear con-
secutively in the sublist of L that contains the tasks of B,. Therefore n, can
be computed easily. Now, when n, < m(r,+; — r,), then j, ,+; = 0 and
bpp+1 = m(rpey — 1,) — n,. Otherwise, i, ,+1 =0 and j,,+1 = n, —
m(r,s+1 — 1,). In summary we have proved the following theorem:

THEOREM 5.4. When L is sorted, then the release-time deadline problem
can be implemented in O (log n) parallel time using O (n?) processors. ®

6. THE P-COMPLETENESS RESULTS FOR HEIGHT-PRIORITY SCHEDULES

Our P-completeness result is a reduction from a version of the boolean
circuit value problem [L75). The circuit has only one input a which is zero.
All remaining inputs are computed from @y. We use nand- and nor-gates
which come in pairs. Every nand-gate (nor-gate) is succeeded (preceded) by
a nor-gate (nand-gate) which has the same two inputs. We assume that the
circuit is given in some topological order; i.e., it is a sequence
(ao, (¢ 2 I az,,), S.t. g = 0 and -1 = Q; N g, Oy = O \V a, for
l1=<i=<nandsomej, ks.t.0 =j =k = 2i — 2. Letv(a,), 0 =< r < 2n,
denote the boolean value of «,. It is easy to see that computing v(a,,) is
P-complete for this version of the boolean circuit value problem.

The P-completeness proof uses the fact that the profile is not straight. A
profile is called nondecreasing if w(k) = u(k + 1) for every slot k.

THEOREM 6.1.  Given an outforest G and a nondecreasing profile u, then
to find a height—priority schedule is P-complete.

Proof. We reduce a boolean circuit problem of the above form to produc-
ing a height—priority schedule for a scheduling problem. Let (ao, a;, . . . ,
ay,) be such a circuit. From this circuit the outforest G and the profile w of
the corresponding scheduling problem are constructed. The construction can
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be done by an algorithm that uses only O (log n) work space. A task of G will
have two subscripts i, j meaning that this task corresponds to «; and will be
scheduled in slot j — v(a;) of any height—priority schedule. The graph G
consists of a number of chains. A chain is a sequence of tasks s.t. the jth task
of the chain precedes the (j + 1)st task. Chains are combined to outtrees by
making the first tasks of the chains successors of other chain tasks.

The input ay = O corresponds to the chain T, which consists of tasks
{to; | 0 < j = 5n} with the precedence constraints fo ;-1 = o,; (1 =j = 5n).
Let ay_; and ay, | = k < n, be a pair of nand- and nor-gates using the
same inputs a, and e, . The gates ax-; and ay correspond to chains T5—; and
Ty, respectively, where

T2k_1 = {t2k—1,j | k S_] < 5n — 4k + 2}
and
Ty := {t2k,j | k 5_] = 5n — 4k}

Note that the first vertices in T»;—; and T, have the same second subscript and
that h(Ty-1) = h(Ty) + 2 = h(Tus+1) + 4.

The gates ay_; and a are also responsible for two chains Bj and B%. The
chain B consists of the set of tasks, {b7;' | k =j =< 5n — 2p}. An addi-
tional edge ¢, ;- = b2 ' connects B} and T}, to an outtree. The definitions for
B! are identical except q is substituted for p. This completes the definition
of G.

The profile u has the form

() = 4j + 3 fo0=i=n-1
ry m+1  ifi=n

The following claim shows that there exists exactly one height-priority
schedule s. It is easy to determine v(e,), 1 = r =< 2n, from this schedule.

CLAIM. Slot j of any height-priority schedule for G and p contains
exactly all tasks of G having i and j — v(a;) as their subscripts, for
0=<i=2n,and0 =j = 5n,

Proof of the Claim. The claim implies that depending on whether v(a;),
for 0 < i < 2n, is zero or one, all tasks of 7; (and the B-chains connected
to it) will be scheduled in the slot of their second subscript or one earlier,
respectively. Call T; late if its tasks are scheduled in the slot of their second
subscript and early if they are scheduled one earlier. In slot f (0 = f =
n — 1), it is decided whether Ty, and Ty, are early or late (see Fig. 3 and
Table IIT). The proof is by an induction using the following relationships
between the heights of the tasks and their subscripts.
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second

subscript T T, T, Ty T Ty T
(o} ,slot0, u(0)=3
I N 2 A slot 1, u(1)=7
——@-- ~slot2, p(2)=11

-
-

e e B gl SEPEE
o —b-4" ¥s|013,/.1(3)=l3

3pl gl
BOBOBO

FiG. 3. The outforest G corresponding to the circuit of Table IV.

Let x; jand y;, ; be tasks of G with indices i, jand i + 1, j, respectively.
That is, x; ; equals ¢, ; or b? ;, for some p, and similarly for y,; ;. Then,

h(x;;) = h(yi+1,;) + 2. Furthermore, for any x; ;and y, ,in G, ifi < p
and rj —gq| =1, then h(x;;) > h(x,,q).

Thus in any height—priority schedule, tasks with lower first subscript are
preferred if their second subscripts differ at most by one.

We prove the claim by an induction on the slot j. The slot zero of a
height—priority schedule contains the three tasks # o, 1,1, £, of G of depth
zero. Note that v(a) = 0, v(a;) = 1, and v(a,) = 1 in all circuits, because
v(ag) = 0. The tasks #,o, #,1, and #,,; are late, early and early, respectively.
We showed that the claim holds for the slot zero.

Assume the claim holds for the slots 0, 1, 2, . . ., j — 1 and we want to
prove it for slot j. If j = n then u(j) = 4n + 1. Since there are 4n + 1
chains in G, all available tasks are scheduled in slot j. Thus all the tasks are
scheduled in slot j whose predecessors are scheduled in the slots

0,1, ...,j— 1. By induction we know that these predecessors have sub-
TABLE III
A BOOLEAN CIRCUIT WITH PAIRED NAND- AND NOR-GATES.*
Index k 0 1 2 3 4 5 6
a 0 a /\ ao a \/ ap a N\ a; a \/ a aNas o\ as
v(o) 0 1 1 1 0 0 0
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scripts i, p s.t. p = j — v(a;) — 1. We conclude that all tasks with sub-
scripts i, j — v(a;) are scheduled in slot j, i.e., the claim holds if j = n.

Assume 1 < j < n. Inslotj it is determined whether the tasks of 75;,, and
T»+, are scheduled at the slot of their second subscript or one earlier, i.e.,
v(ay+1) and v(ay;+,) are computed in slot j. Slot j has size 4j + 3. Let us first
determine which tasks of the trees corresponding to a; (0 < i =< 2j) are
available for slot j. All these tasks have a height greater than #,;+, ; and 15 j,
the roots of the trees 754, and Ty;4,, respectively.

b, j-o(ay)» for0 =i =2j:2j+ 1 tasks
b¥; @y,  for 1 =i = 2j and appropriate k : 2j tasks.

Altogether this gives us 4j + 1 tasks, and thus there are two spaces left for
slot j. These two spaces must be filled with two tasks of maximum height.
Assume the gate 41 and ay;+; use a, and a, as inputs

Then b2;'(b}") is available to be scheduled in slot j iff v(ay+1) = 1
(v(ay+2) = 1). Note that h(bF[") = h(b3") > h(ty+1.1) > h(tye2,)). Ta-
ble IV shows what tasks fill the two spaces. #,.;,; is scheduled in slot
j iff v(a,) /\ v(a,) holds, and t; iff v(a,) \/ v(e,) is true.

This claim completes the proof of the theorem. ®

The reduction of Theorem 6.1 leads to various related P-completeness
results for straight profiles. For example, we can pad the nondecreasing
profile with an intree to get the following:

COROLLARY 6.1. To find a height-priority schedule for an opposing
forest and a straight profile is P-complete.

Proof. The number of machines m in the straight profile is u(n) + 1,
where u is defined as in the proof of Theorem 6. 1. The precedence constraints
consist of the outforest G of the proof of Theorem 6.1 plus one intree  which
will contribute m — w(j) tasks to slot j:

I:i={e,;|1=i=m—-p(j),0=j=<5n+1}
ei,jéel,jﬂ forl<i<m-— I»L(j),OSj = sn.

TABLE IV
THE TASKS SCHEDULED IN THE
TWO ADDITIONAL SPACES

OF SLOT j
o(ey) vle) In slot j
0 0 Bj+1,js baj+2,j
0 1 bj+1,js brz,jrl
1 0 bZ, tysr,;
1 1 b2;+l b21+1

qJ
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Note that A(I) > h(G). Let s be the height—priority schedule for G and . It
is easy to see that there is exactly one height—priority schedule s’ for G U I
and m:

s'(x) = sx), forx €G
s'(ei;) = Jj, forl=i=m-u(j),0=<j=5+1.

Thus the theorem follows. ®

Scheduling according to height is also hard for various other classes of
precedence graphs. For example, a level order is a precedence graph in which
the vertices of every component are partitioned into levels (according to the
height of the vertices) and the vertices of a level precede all vertices of the
same component of the levels below it.

COROLLARY 6.2.  To find a height—priority schedule for a level order and
a straight profile is P-complete.

Proof. We just observe that in the height—priority schedule for G U I of
the previous proof all tasks belonging to the same level of a component appear
in the same slot. Thus we can add edges to G U I such that each component
becomes a level order component. ®

We also get P-completeness results for straight profiles if we do not change
the class of precedence graphs but the priority function. Assume every task
x is given a weight w(x) € 1, 2, 3. Note that w is a priority function.

COROLLARY 6.3. Let G' be a weighted outforest using only three different
weights. To find a weight—priority schedule for G' and a straight profile is
P-complete.

Proof.  Again we use the reduction of Theorem 6.1 but this time we pad
the straight profile with an outforest O. (In Corollary 6.1 we used an inforest.)
LetG' =G UO,m= (@ + 1 and

0={0,’jllslSm_ﬂ(]),OSJSSH'l' 1}
01,j$0i,j+19 forl =i Sm_M(]),OS] = 5n.

We will define the weights s.t. there will be only one weight—priority schedule
s’ for G' and m:

s'(x) = s(x), forx € G
s'(0i;) = j forl=i=m-pu(j),0<j=<5+1.
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This holds if

w(o) := 3, foro € O
w(b) := 3, for all b-type tasks of G

3 ifi=0
w(first task of T;) = 42 if @; is a nand-gate
1 if @; is a nor-gate

all other ¢-type tasks have weight 3. W

Let the list L be the tasks of G’ sorted according to nondecreasing weight.
If we define G' and m as in the proof of Corollary 6.3 then the weight—priority
schedule for G’ and m is the lexicographically first schedule for G’ and m and
thus:

COROLLARY 6.4. To find a lexicographically first schedule for an out-
forest and a straight profile is P-complete.

7. APPROXIMATING 2 — 1/m FROM OPTIMAL

Let G be an arbitrary precedence graph and let m be the number of ma-
chines. Any greedy m processor schedule is 2 — 1/m from optimal [Gr69].
We define a nongreedy schedule which approximates the optimal schedule by
the same factor. This schedule can be found in O (log? n) parallel time on an
EREW PRAM using an O (n?) processor.

A depth schedule for G is defined by the following procedure. Let d; denote
the number of tasks in G of depth k.

for k := 0to p(G) do
schedule the d; tasks of G of depth k in the next [d;/m] time slots.

Let D, (G) (resp. 0,,(G)) denote the length of the m processor depth sched-
ules (resp. optimal schedules) of G.

THEOREM 7.1. D,,(G)/0,.(G) =2 — 1/m.

Proof. Let G be a precedence graph for which the theorem is false. Let
i be the number of idle periods in an optimal schedule for G. Add i indepen-
dent tasks to G. Call the new graph G'. Clearly, D,(G') = D,,(G) and
0,.(G) = 0,(G') = n/m = p(G'), where n is the number of tasks in G'.
It follows that G’ also contradicts the theorem since D,,(G')/0,(G') =
D,(G)/0.(G).

Let s be a depth schedule for G in which f slots contain m tasks and e slots
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contain at least one but less than m tasks. Observe that e < p(G’) and f <
(n — p(G'))/m. Now the following inequalities lead to a contradiction.

Da(G) _et+f _p(G) + (n—pGN/m _pG)om—1)+n
0.G'Y n/m — n/m n

S(n/m)(m—l)+n___2_l' .
n m

Once the depth of every vertex is found then it is trivial to find a depth
schedule.

THEOREM 7.2 [DS81]. The depth of every vertex in a directed acyclic
graph can be determined in O (log® n) time on an EREW PRAM using O (n?)
processors.
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