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We examine connections between combinatorial notions that arise in machine learning 
and topological notions in cubical/simplicial geometry. These connections enable to export 
results from geometry to machine learning. Our first main result is based on a geometric 
construction by Tracy Hall (2004) [20] of a partial shelling of the cross-polytope which can 
not be extended. From it, we derive a maximum class of VC dimension 3 without corners. 
This refutes several previous works in machine learning. In particular, it implies that the 
previous constructions of optimal unlabeled sample compression schemes for maximum 
classes are erroneous. On the positive side we present a new construction of an optimal 
unlabeled sample compression scheme for maximum classes. We leave as open whether 
our unlabeled sample compression scheme extends to ample classes, which generalize 
maximum classes. Towards resolving this question, we provide a geometric characterization 
in terms of unique sink orientations of the associated 1-inclusion graph.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The Sauer-Shelah-Perles Lemma [38,40,43] is arguably the most basic fact in VC theory; it asserts that any class C ⊆
{0, 1}n satisfies |C | ≤ ( n

≤d

)
, where d = VC-dim(C). A beautiful generalization of Sauer-Shelah-Perles’s inequality asserts that 

|C | ≤ |X(C)|, where X(C) is the family of subsets that are shattered by C .1 The latter inequality is a part of the Sandwich 
Lemma [3,8,13,33], which also provides a lower bound for |C | (and thus “sandwiches” |C |) in terms of the number of 
its strongly shattered subsets (see Section 2). A class C is called maximum/ample if the Sauer-Shelah-Perles/Sandwich upper 
bounds are tight (respectively). Every maximum class is ample, but not vice versa.

Maximum classes were studied mostly in discrete geometry and machine learning, e.g. [15,16,18,23,45]. The history of 
ample classes is more interesting as they were discovered independently by several works in disparate contexts [3,5,8,13,
24,29,46]. Consequently, they received different names such as lopsided classes [24], extremal classes [8,29], and ample 
classes [5,13]. Lawrence [24] was the first to define them for the investigation of the possible sign patterns realized by 

✩ An extended abstract [11] of this paper has appeared in the proceedings of ICALP 2019.
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points of a convex set of Rd . Interestingly, Lawrence’s definition of these classes does not use the notion of shattering nor 
the Sandwich Lemma. In this context, these classes were discovered by Bollobás and Radcliffe [8] and Bandelt et al. [5], 
and the equivalence between the two definitions appears in [5]. Ample classes admit a multitude of combinatorial and 
geometric characterizations [5,6,8,24] and comprise many natural examples arising from discrete geometry, combinatorics, 
graph theory, and geometry of groups [5,24].

1.1. Main results

1.1.1. Corner peelings
A corner in an ample class C is any concept c ∈ C that belongs to a unique maximal cube of C (equivalently, c is a 

corner if C \ {c} is also ample, see Lemma 4.1). A sequence of corner removals leading to a single concept is called a corner 
peeling; corner peeling is a strong version of collapsibility. Wiedemann [46] and independently Chepoi (unpublished, 1996) 
asked whether every ample class has a corner. The machine learning community studied this question independently in the 
context of sample compression schemes for maximum classes: Rubinstein and Rubinstein [35] showed that corner peelings 
lead to optimal unlabeled sample compression schemes (USCS).

In Theorem 4.5 we refute this conjecture. The crux of the proof is an equivalence between corner peelings and par-
tial shellings of the cross-polytope. This equivalence translates the question whether corners always exist to the question 
whether partial shellings can always be extended. The latter was an open question in Ziegler’s book on polytopes [49], and 
was resolved in Tracy Hall’s PhD thesis [20] where an interesting counterexample is presented. The ample class resulting 
from Hall’s construction yields a maximum class without corners.

1.1.2. Sample compression
Sample compression is a powerful technique to derive generalization bounds in statistical learning. Littlestone and War-

muth [25] introduced it and asked if every class of VC-dimension d < ∞ has a sample compression scheme of a finite size. 
This question was later relaxed by Floyd and Warmuth [16,44] to whether a sample compression scheme of size O (d) exists. 
The first question was recently resolved by [31] who exhibited an exp(d) sample compression scheme. The second question 
however remains one of the oldest open problems in machine learning (for more background we refer the reader to [30]
and the books [39,47]).

Rubinstein and Rubinstein [35, Theorem 16] showed that the existence of a corner peeling for a maximum class C
implies a representation map for C (see Section 3 for a definition), which is known to yield an optimal unlabeled sample 
compression scheme of size VC-dim(C) [23].2 They claim, using an interesting topological approach, that maximum classes 
admit corner peelings. Unfortunately, our Theorem 4.5 shows that this does not hold.

While our Theorem 4.5 rules out the program of deriving representation maps from corner peelings, in Theorem 5.1
we provide an alternative derivation of representation maps for maximum classes and therefore also of unlabeled sample 
compression schemes for them.

1.1.3. Sample compression and unique sink orientations
We next turn to construction of representation maps for ample classes. In Theorem 6.8 we present geometric characteri-

zations of such maps via unique sink orientations: an orientation of the edges of a cube B is a unique sink orientation (USO) if 
any subcube B ′ ⊆ B has a unique sink. Szabó and Welzl [41] showed that any USO of B leads to a representation map for B . 
We extend this bijection to ample classes C by proving that representation maps are equivalent to orientations r of C such 
that (i) r is a USO on each subcube B ⊆ C , and (ii) for each c ∈ C the edges outgoing from c belong to a subcube B ⊆ C . We 
further show that any ample class admits orientations satisfying each one of those conditions. However, the question whether 
all ample classes admit representation maps remains open.

1.1.4. Implications on previous works
Our Theorem 4.5 establishes the existence of maximum classes without any corners, thus countering several previous 

results in machine learning:

• Rubinstein and Rubinstein [35, Theorem 32] showed that any maximum class can be represented by a simple arrange-
ment of piecewise-linear hyperplanes. In [35, Theorem 39], they claim that sweeping such an arrangement leads to a 
corner peeling of the corresponding maximum class. This is unfortunately false, as witnessed by Theorem 4.5.

• Kuzmin and Warmuth [23] constructed unlabeled sample compression schemes for maximum classes based on the 
presumed uniqueness of a certain matching (their Theorem 10). This theorem is wrong (as explained in Section 4.2) as 
it implies the existence of corners and Hall’s counterexample does not have corners. However their conclusion is correct: 
In our Theorem 5.1 we show that such unlabeled compression schemes always exist based on a different construction 
and proof method.

• Theorem 3 by Samei, Yang, and Zilles [37] is built on a generalization of Theorem 10 from [23] to the multiclass case 
which is also incorrect.

2 Pálvölgyi and Tardos [34] recently exhibited a (non-ample) class C with no USCS of size VC-dim(C).
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Fig. 1. A 2-dimensional maximum class C ⊆ 2{1,2,3,4,5} on the left and the restriction Cx for x = 5 on the right. The reduction C x corresponds to the 
restriction of the carrier Nx(C).

• Theorem 26 by Doliwa et al. [12] uses the result in [35] to show that the Recursive Teaching Dimension (RTD) of 
maximum classes equals to their VC dimension. However the VC dimension 3 maximum class from Theorem 4.5 has 
RTD at least 4. It remains open whether the RTD of every maximum class C is bounded by O (VC-dim(C)).

1.1.5. An optimal proper PAC learner for maximum classes
In a recent work, Bousquet, Hanneke, Moran, and Zhivotovskiy [9] showed that a special type of sample compression 

schemes, termed stable compression schemes, achieve the optimal learning rate in PAC learning. They further noticed that 
any sample compression scheme which is defined by a representation map is stable. Thus, using the compression scheme 
constructed in this paper, Bousquet et al. conclude that every maximum class can be properly learned by an algorithm 
achieving the optimal learning rate.

1.2. Organization

Section 2 presents the main definitions and notations. Section 3 reviews characterizations of ample/maximum classes and 
characteristic examples. Section 4 demonstrates the existence of the maximum class C H without corners. Section 5 estab-
lishes the existence of representation maps for maximum classes. Section 6 establishes a bijection between representation 
maps and unique sink orientations for ample classes.

2. Preliminaries

A concept class C is a set of subsets (concepts) of a finite ground set U which is called the domain of C and denoted 
dom(C). We sometimes treat the concepts as characteristic functions rather than subsets. The support (or dimension set) 
supp(C) of C is the set {x ∈ U : x ∈ c′ \ c′′ for some c′, c′′ ∈ C}.

Let C be a concept class of 2U . The complement of C is C∗ := 2U \ C . The twisting of C with respect to Y ⊆ U is the 
concept class C�Y = {c�Y : c ∈ C}. The restriction of a concept c ∈ C on Y ⊆ U is the concept c|Y = c ∩ Y . The restriction
of C on Y ⊆ U is the class C |Y = {c|Y : c ∈ C} whose domain is Y . We use CY as shorthand for C |(U \ Y ); in particular, we 
write Cx for C{x} (see Fig. 1 for an example), and cx for c|(U \ {x}) for c ∈ C (note that cx ∈ Cx). A concept class B ⊆ 2U is a 
cube if there exists Y ⊆ U such that B|Y = 2Y and BY contains a single concept (denoted by tag(B)). Note that supp(B) = Y
and therefore we say that B is a Y -cube; |Y | is called the dimension dim(B) of B . Two cubes B, B ′ with the same support 
are called parallel cubes. A cube B is maximal if there is no cube B ′ such that B � B ′ .

Let Q n denote the n-dimensional cube where n = |U |; c, c′ ∈ Q n are called adjacent if the symmetric difference c�c′ is 
of size 1. The 1-inclusion graph of C is the subgraph G(C) of Q n induced by the vertex-set C when the concepts of C are 
identified with the corresponding vertices of Q n . Any cube B ⊆ C is called a cube of C . The cube complex of C is the set 
Q (C) = {B : B is a cube of C}. The cubes of C are called the faces of Q (C) and the maximal cubes of C are called the facets 
of Q (C). The dimension dim(Q (C)) of Q (C) is the largest dimension maxB∈Q (C) dim(B) of a cube of Q (C). A concept c ∈ C
is called a corner of C if c belongs to a unique maximal cube of C .

The reduction C Y of a concept class C to Y ⊆ U is a concept class on U \ Y which has one concept for each Y -cube of C : 
C Y := {tag(B) : B ∈ Q (C) and supp(B) = Y }. When x ∈ U we denote C {x} by C x and call it the x-hyperplane of C (see Fig. 1
for an example). Note that a concept c belongs to C x if and only if c and c ∪ {x} both belong to C . The union of all cubes 
3
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of C having x in their support is called the carrier of C x and is denoted by Nx(C). If c ∈ Nx(C), we also denote c|(U \ {x})
by cx (note that cx ∈ C x).

The tail tailx(C) of a concept class C on dimension x consists of all concepts that do not have in G(C) an incident edge 
labeled with x. They correspond to the concepts of Cx \ C x , i.e., to the concepts of Cx that have a unique extension in C . The 
class C can be partitioned as Nx(C) ·∪ tailx(C) = 0C x ·∪ 1C x ·∪ tailx(C), where ·∪ denotes the disjoint union and bC x consists 
of all concepts in C x extended with bit b in dimension x.

Given two classes C ⊆ 2U and C ′ ⊆ 2U ′
where U and U ′ are disjoint, the Cartesian product C × C ′ ⊆ 2U ·∪U ′

is the concept 
class {c ·∪ c′ : c ∈ C and c′ ∈ C ′}.

A concept class C is connected if the graph G(C) is connected. If C is connected, denote by dG(C)(c, c′) the graph-distance 
between c and c′ in G(C) and call it the intrinsic distance between c and c′ . The distance d(c, c′) := dQ n (c, c′) between two 
vertices c, c′ of Q n coincides with the Hamming distance |c�c′| between the 0-1-vectors corresponding to c and c′ . Let 
B(c, c′) = {t ⊆ U : d(c, t) + d(t, c′) = d(c, c′)} be the interval between c and c′ in Q n; equivalently, B(c, c′) is the smallest 
cube of Q n containing c and c′ . A connected concept class C is called isometric if d(c, c′) = dG(C)(c, c′) for any c, c′ ∈ C
and locally isometric if d(c, c′) = dG(C)(c, c′) for any c, c′ ∈ C such that d(c, c′) ≤ 2. Any path of C Y connecting two concepts 
tag(B) and tag(B ′) of C Y can be lifted to a path of parallel Y -cubes connecting B and B ′ in C ; such a path of cubes is called 
a gallery.

A simplicial complex X on a set U is a family of subsets of X , called simplices or faces of X , such that if σ ∈ X and σ ′ ⊆ σ , 
then σ ′ ∈ X . The facets of X are the maximal (by inclusion) faces of X . The dimension d of X is the size of its largest face. 
A simplicial complex X is a pure simplicial complex of dimension d if all its facets have size d.

A set Y ⊆ U is shattered by a concept class C ⊆ 2U if C |Y = 2Y . Furthermore, Y is strongly shattered by C if C contains 
a Y -cube. Denote by X(C) and X(C) the simplicial complexes consisting respectively of all shattered and of all strongly 
shattered sets of C . Clearly, X(C) ⊆ X(C) and both X(C) and X(C) are closed by taking subsets, i.e., X(C) and X(C) are 
simplicial complexes. The classical VC-dimension [43] VC-dim(C) of a concept class C is the size of the largest set shattered 
by C , i.e., the dimension of the simplicial complex X(C).3 The fundamental sandwich lemma (rediscovered independently by 
Pajor [33], Bollobás and Radcliffe [8], Dress [13], and Anstee et al. [3]) asserts that |X(C)| ≤ |C | ≤ |X(C)|. If d = VC-dim(C)

and n = |U |, then X(C) cannot contain more than �d(n) := ∑d
i=0

(n
i

)
simplices, yielding the well-known Sauer-Shelah-Perles 

lemma [38,40,43] that |C | ≤ �d(n).
A labeled sample is a set s = {(x1, y1), . . . , (xm, ym)}, where xi ∈ U and yi ∈ {0, 1}. An unlabeled sample is a set 

{x1, . . . , xm}, where xi ∈ U . A subsample s′ of a sample s (labeled or unlabeled) is a subset of s. Given a labeled sample 
s = {(x1, y1), . . . , (xm, ym)}, the unlabeled sample {x1, . . . , xm} is the domain of s and is denoted by dom(s). A labeled sam-
ple s is realizable by a concept c : U → {0, 1} (seen as a map) if c(xi) = yi for every i, and s is realizable by a concept class 
C if it is realizable by some c ∈ C . For a concept class C , let RS(C) be the set of all labeled samples realizable by C .

A sample compression scheme for a concept class C is best viewed as a protocol between a compressor α and a recon-
structor β (which both depend of C ). The compressor gets a labeled sample s realizable by C from which it picks a small 
subsample s′ . The compressor sends s′ to the reconstructor. Based on s′ , the reconstructor outputs a concept c ∈ C that 
needs to be consistent with the entire input sample s. A sample compression scheme has size k if for every realizable input 
sample s the size of the compressed subsample s′ is at most k. An unlabeled sample compression scheme is a sample com-
pression scheme in which the compressed subsample s′ is unlabeled. So, the compressor removes the labels before sending 
the subsample to the reconstructor. An unlabeled sample compression scheme of size k for a concept class C ⊆ 2U is thus 
defined by a (compressor) function α : RS(C) → ( U

≤k

)
and a (reconstructor) function β : Im(α) := α(RS(C)) → C such that for 

any realizable sample s of C , the following conditions hold: α(s) ⊆ dom(s) and β(α(s))| dom(s) = s.
In the literature, one usually allows the reconstructor β to take values in 2U , i.e., the reconstructor can return a subset 

that is not a concept of C . The unlabeled sample compression schemes we consider in this paper, i.e., satisfying the property 
that Im(β) ⊆ C , are usually called proper unlabeled sample compression schemes.

3. Ample and maximum classes

In this section, we briefly review the main characterizations and the basic examples of ample classes (maximum classes 
being one of them).

3.1. Characterizations

A concept class C is called ample if |C | = |X(C)|. Ample classes are closed by taking restrictions, reductions, intersections 
with cubes, twistings, complements, and Cartesian products.

The following theorem reviews the main combinatorial characterizations of ample classes:

Theorem 3.1 ([5,8,24]). The following conditions are equivalent for a class C:

3 Note that the usual definition of the dimension of a simplicial complex X is the size of the largest face of X minus 1. We adopted this convention to 
have an equality between the VC-dimension of a class C and the dimension of X(C).
4
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(1) C is ample;
(2) C∗ is ample;
(3) X(C) = X(C);
(4) |X(C)| = |C |;
(5) |X(C)| = |C |;
(6) C ∩ B is ample for any cube B;
(7) (C Y )Z = (C Z )Y for all Y , Z ⊆ U with Y ∩ Z = ∅;
(8) for all partitions U = Y ·∪ Z , either Y ∈ X(C) or Z ∈ X(C∗).4

Condition (3) leads to a simple definition of ampleness: C is ample if whenever Y ⊆ U is shattered by C , then there 
is a Y -cube in C . Thus, if C is ample we will write X(C) instead of X(C) = X(C). It follows that for ample classes, the 
VC-dimension of a concept class C , the dimension of the simplicial complex X(C), and the dimension of the cube complex 
of C are the same. In the following, we talk about a d-dimensional class C when these three dimensions are equal to d.

We continue with metric and recursive characterizations of ample classes:

Theorem 3.2 ([5]). The following are equivalent for a concept class C:

(1) C is ample;
(2) C Y is connected for all Y ⊆ U ;
(3) C Y is isometric for all Y ⊆ U ;
(4) C is isometric, and both Cx and C x are ample for all x ∈ U ;
(5) C is connected and all hyperplanes C x are ample.

Corollary 3.3. Two maximal cubes of an ample class C have different supports.

Proof. Indeed, if B and B ′ are two d-cubes with the same support, by Theorem 3.2(2) B and B ′ can be connected in C by 
a gallery, and thus B is contained in a d + 1-cube. Therefore, B and B ′ cannot be maximal. �
Lemma 3.4. Given an ample class C and x ∈ U , for any cube B of Cx, there exists a cube B ′ of C such that supp(B ′) = supp(B) and 
B ′

x = B.

Proof. Consider the cube B∗ of 2U such that supp(B∗) = supp(B) ∪ {x} and B∗
x = B . By Theorem 3.1(6), C ∩ B∗ is ample. 

Since supp(B) is shattered by C ∩ B∗ , there exists a cube B ′ in C ∩ B∗ such that supp(B ′) = supp(B). Since B ′
x = B∗

x = B , we 
are done. �

A concept class C ⊆ 2U of VC-dimension d is maximum if |C | = �d(n) = ∑d
i=0

(n
i

)
, i.e., if C = ⋃d

i=0

([n]
i

)
(where n = |U |). 

The Sandwich Lemma and Theorem 3.1(5) imply that maximum classes are ample. Analogously to ample classes, maximum 
classes are hereditary by taking restrictions, reductions, twistings, and complements. Basic examples of maximum classes 
are concept classes derived from arrangements of hyperplanes in general position, balls in Rn , and unions of n intervals on 
the line [15,16,18,21]. The following theorem summarizes some characterizations of maximum classes:

Theorem 3.5 ([15,16,18,45]). The following conditions are equivalent for a concept class C:

(1) C is maximum;
(2) CY is maximum for all Y ⊆ U ;
(3) Cx and C x are maximum for all x ∈ U ;
(4) C∗ is maximum.

Following Kuzmin and Warmuth [23], we define a representation map for an ample class C as a bijection r : C → X(C)

satisfying the non-clashing condition: c|(r(c) ∪ r(c′)) �= c′|(r(c) ∪ r(c′)), for all c, c′ ∈ C, c �= c′ . It was shown in [23] that the ex-
istence of a representation map for a maximum class C implies an unlabeled sample compression scheme of size VC-dim(C)

for C . In Section 6, we show that this also holds for ample classes. Moreover we show that for ample classes, they are equiv-
alent to �-representation maps defined as follows. A �-representation map for an ample class C is a bijection r : C → X(C)

satisfying the �-non-clashing condition: c|(r(c)�r(c′)) �= c′|(r(c)�r(c′)), for all c, c′ ∈ C, c �= c′ .

3.2. Examples

We continue with the main examples of ample classes.

4 This is the original definition of lopsidedness by Lawrence [24].
5
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Fig. 2. An ample class which is also a convex geometry.

3.2.1. Simplicial complexes
The set of characteristic functions of simplices of a simplicial complex S can be viewed as a concept class C(S): C(S) is 

a bouquet of cubes with a common origin ∅, one cube for each simplex of S . Therefore, X(C(S)) = S and since |S| = |C(S)|, 
C(S) is an ample class having S as its simplicial complex [5].

3.2.2. Realizable ample classes
Let K ⊆ Rn be a convex set. Let C(K ) := {sign(v) : v ∈ K , vi �= 0, ∀i ≤ n}, where sign(v) ∈ {±1}n is the sign pattern of 

v . Lawrence [24] showed that C(K ) is ample, and called ample classes representable in this manner realizable. Lawrence 
presented a non-realizable ample class of Q 9 arising from a non-stretchable arrangement of pseudolines. It is shown in [6]
that any ample class becomes realizable if instead of a convex set K one considers a Menger �1-convex set K of Rn .

3.2.3. Median classes
A class C is called median if for every three concepts c1, c2, c3 of C their median m(c1, c2, c3) := (c1 ∩ c2) ∪ (c1 ∩ c3) ∪

(c2 ∩ c3) also belongs to C . Median classes are ample by [5, Proposition 2]. Median classes are closed by taking reductions, 
restrictions, intersections with cubes, and products but not under complementation.

Due to their relationships with other discrete structures, median classes are one of the most important examples of 
ample classes. Median classes are equivalent to finite median graphs (a well-studied class in metric graph theory, see [4]), 
to CAT(0) cube complexes, i.e., cube complexes of global nonpositive curvature (central objects in geometric group theory, 
see [19,36]), and to the domains of event structures (a basic model in concurrency theory [32,48]).

3.2.4. Convex geometries and conditional antimatroids
Let C be a concept class such that (i) ∅ ∈ C and (ii) c, c′ ∈ C implies that c ∩ c′ ∈ C . A point x ∈ c ∈ C is called extremal

if c \ {x} ∈ C . The set of extremal points of c is denoted by ex(c). A concept c ∈ C is generated by s ⊆ c if c is the smallest 
concept of C containing s. A concept class C satisfying (i) and (ii) with the additional property that every concept c of C is 
generated by its extremal points is called a conditional antimatroid [5, Section 3]. If U ∈ C , then we obtain the well-known 
structure of a convex geometry (called also an antimatroid) [14] (See Fig. 2 for an example). It was shown in [5, Proposition 
1] that if C is a conditional antimatroid, then X(C) = X(C), since X(C) coincides with the sets of extremal points and 
X(C) coincides with the set of all minimal generating sets of sets from C . Hence, any conditional antimatroid is ample. 
Besides convex geometries, median classes are also conditional antimatroids. Another example of conditional antimatroids 
is given by the set C of all strict partial orders on a set M . Each partial order is an asymmetric, transitive subset of 
U = {(u, v) : u, v ∈ M, u �= v}. Then it is shown in [5] that for any c ∈ C , ex(c) is the set of covering pairs of c (i.e., the pairs 
(u, v) such that u < v and there is no w with u < w < v) and that

X(C) = X(C) = {H ⊆ U : H is the Hasse diagram of a partial order on M}.
Convex geometries comprise many interesting and important examples from geometry, ordered sets, and graphs, see the 
foundational paper [14]. For example, by the Krein-Milman theorem, any polytope of Rn is the convex hull of its extremal 
points. A realizable convex geometry is a convex geometry C such that its point set U can be realized as a finite set of Rn

and c ∈ C if and only if c is the intersection of a convex set of Rn with U . Acyclic oriented geometries (acyclic oriented 
matroids with no two point circuits) are examples of convex geometries, generalizing the realizable ones.

We continue with two particular examples of conditional antimatroids.
6
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Example 3.6. Closer to usual examples from machine learning, let U be a finite set of points in Rn , no two points sharing 
the same coordinate, and let the concept class C� consist of all intersections of axis-parallel boxes of Rn with U . Then C�

is a convex geometry: for each c ∈ C� , ex(c) consists of all points of c minimizing or maximizing one of the n coordinates. 
Clearly, for any p ∈ ex(c), there exists a box � such that � ∩ U = c \ {p}.

Example 3.7. A partial linear space is a pair (P , L) consisting of a finite set P whose elements are called points and a family L
of subsets of P , whose elements are called lines, such that any line contains at least two points and any two points belong 
to at most one line. The projective plane (any pair of points belong to a common line and any two lines intersect in exactly 
one point) is a standard example, but partial linear spaces comprise many more examples. The concept class L ⊆ 2P has 
VC-dimension at most 2 because any two points belong to at most one line. Now, for each line � ∈ L fix an arbitrary total 
order π� of its points. Let L∗ consist of all subsets of points that belong to a common line � and define an interval of π� . 
Then L∗ is still a concept class of VC-dimension 2. Moreover, L∗ is a conditional antimatroid: if c ∈ L∗ and c is an interval 
of the line �, then ex(c) consists of the two end-points of c on �.

3.2.5. Ample classes from graph orientations
Kozma and Moran [22] used the sandwich lemma to derive several properties of graph orientations. They also presented 

two examples of ample classes related to distances and flows in networks (see also [24, p. 157] for another example of 
a similar nature). Let G = (V , E) be an undirected simple graph and let o∗ be a fixed reference orientation of E . To an 
arbitrary orientation o of E associate a concept co ⊆ E consisting of all edges which are oriented in the same way by o and 
by o∗ . It is proven in [22, Theorem 26] that if each edge of G has a non-negative capacity, a source s and a sink t are fixed, 
then for any flow-value w ∈ R+ , the set Cflow

w of all orientations of G for which there exists an (s, t)-flow of value at least 
w is an ample class. An analogous result was obtained if instead of the flow between s and t one considers the distance 
between those two nodes.

4. Corner peelings and partial shellings

In this section, we prove that corner peelings of ample classes are equivalent to isometric orderings of C as well as to 
partial shellings of the cross-polytope. This equivalence, combined with a result by Hall [20] yields a maximum class with 
VC dimension 3 without corners (Theorem 4.5 below). We show that this counterexample also refutes the analysis of the 
Tail Matching Algorithm of Kuzmin and Warmuth [23] for constructing unlabeled sample compression schemes for maximum 
classes. On the positive side, we prove the existence of corner peelings for conditional antimatroids and 2-dimensional 
ample classes. Finally we show that the cube complexes of all ample classes are collapsible.

4.1. Corners, isometric orderings, and partial shellings

We first establish some properties satisfied by the corners of an ample class. For t /∈ C , let F [t] be the smallest cube of 
Q n containing t and all neighbors of t in Q n that are in C . Note that the dimension of F [t] is the number of neighbors of t
in G(C).

Lemma 4.1. Let C be ample. Then:

(i) If t /∈ C then F [t] ⊆ C ∪ {t}.
(ii) If t /∈ C and C ′ := C ∪ {t} is isometric then C ′ is ample and t is a corner of C ′ .

(iii) c is a corner of C if and only if C \ {c} is ample.

Proof. Item (i): Suppose F [t] \ C �= {t}. Pick s �= t that is closest to t in F [t] \ C (with respect to the Hamming distance of 
Q n). Then t and s are not adjacent (by the definition of F [t]). By the choice of s, B(s, t) \ {s, t} ⊆ C , i.e., B(s, t) ∩ C∗ = {t, s}. 
However, by Theorem 3.1, C∗ is ample and thus isometric by Theorem 3.2, contradicting that B(s, t) ∩ C∗ = {t, s}.

Item (ii): To prove that C ′ is ample, we use Theorem 3.2(2). First note that by item (i), F [t] ⊆ C ′ . Let F ′ �= F ′′ be parallel 
cubes of C ′ . If t /∈ F ′ ∪ F ′′ , then a gallery connecting F ′ and F ′′ in C is a gallery in C ′ . So, assume t ∈ F ′ . If F ′ is a proper 
face of F [t], then F ′ is parallel to a face F of F [t] not containing t . Since F ′ and F are connected in F [t] by a gallery 
and F and F ′′ are connected in C by a gallery, we obtain a gallery between F ′ and F ′′ in C ′ . Finally, let F ′ = F [t]. In this 
case, we assert that F ′′ does not exist. Otherwise, we define a parallelism map π between the concepts of F ′ and the 
concepts of F ′′ as follows: for any c′ ∈ F ′ , π(c′) is the unique concept c′′ ∈ F ′′ such that c′| supp(F ′) = c′′| supp(F ′′) (recall 
that supp(F ′) = supp(F ′′)). Note that for any r ∈ F ′: d(t, π(t)) = d(r, π(r)) = d(F ′, F ′′). Since C ′ is isometric, t and π(t) can 
be connected in C ′ by a path P of length d(t, π(t)). Let s be the neighbor of t in P . Since s ∈ C it follows that s ∈ F [t] = F ′ . 
So, s is a concept in F ′ that is closer to π(t) than t; this contradicts that d(t, π(t)) = d(F ′, F ′′).

Item (iii): If c ∈ C is a corner then there is a unique maximal cube F ⊆ C containing it. Combined with Corollary 3.3, this 
implies that X(C \ {c}) = X(C) \ {supp(F )}. Next, since |C | = |X(C)|, we get that |C \ {c}| = |X(C \ {c})|, and by Theorem 3.1
7
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C \ {c} is ample. Conversely, if C \ {c} is ample, applying Item (ii) to C \ {c} and c, since C is ample (and thus isometric), we 
get that c is a corner of C . �

Let C< := (c1, . . . , cm) be an ordering of the concepts in C . For any 1 ≤ i ≤ m, let Ci := {c1, . . . , ci} denote the i’th level 
set. The ordering C< is called:

• an ample ordering if every level set Ci is ample;
• a corner peeling if every ci is a corner of Ci ;
• an isometric ordering if every level set Ci is isometric;
• a locally isometric ordering if every level set Ci is locally isometric.

Proposition 4.2. The following conditions are equivalent for an ordering C< = (c1, . . . , cm) of an isometric class C:

(1) C< is ample;
(2) C< is a corner peeling;
(3) C< is isometric;
(4) C< is locally isometric.

Proof. Clearly, (3) ⇒ (4). Conversely, suppose C< is locally isometric but one of its levels is not isometric. Hence, there 
exists i < j such that any shortest (ci, c j)-path in C contains some ck with k > j. Additionally, assume that ci, c j min-
imizes the distance d(ci, c j) among all such pairs. Since C j is locally isometric, necessarily d(ci, c j) ≥ 3. Let cr be the 
first vertex among {c j+1, . . . , cm} lying in B(ci, c j) ∩ C . If d(ci, cr) ≥ 3 or d(cr, c j) ≥ 3 (say the first), then one can replace 
ci, c j by ci, cr , which contradicts the choice of ci, c j . Thus, d(ci, cr), d(cr, c j) ≤ 2, and at least one of them equals 2 (say 
d(ci, cr) = 2). Now, weak isometricity implies that ci and cr have a common neighbor c� with � < max{i, r} = r. If � < j
then c�, c j contradicts the minimality of ci, c j , and if j < � < r then c� contradicts the minimality of cr . This shows (4) ⇒
(3).

If ci is a corner of Ci , then any two neighbors of ci in Ci have a second common neighbor in Ci , and therefore dG(Ci−1)

is the restriction of dG(Ci ) on Ci−1. Since Cm = C is isometric, this proves (2) ⇒ (3).
To show (1) ⇒ (2), let C< be an ample ordering of C . We assert that each ci is a corner of Ci . Indeed, since Ci−1 is 

ample and ci /∈ Ci−1, by Item (i) in Lemma 4.1 the cube F [ci], defined with respect to Ci−1, is included in Ci . Thus, ci
belongs to a unique maximal cube F [ci ] of Ci , i.e., ci is a corner of Ci . To prove (3) ⇒ (1), let C< be an isometric ordering. 
The ampleness of each Ci follows by induction from Item (ii) of Lemma 4.1. �

An isometric concept class C is dismantlable if it admits an ordering satisfying any of the equivalent conditions (1)-(4) in 
Proposition 4.2. Isometric orderings of Q n are closely related to shellings of its dual, the cross-polytope O n (which we define 
next). Define ±U := {±x1, . . . , ±xn}; so, |±U | = 2n, and we call −xi, +xi antipodal. The n-dimensional cross-polytope is the 
pure simplicial complex of dimension n whose facets are all σ ⊆ ±U that contain exactly one element in each antipodal 
pair. Thus, O n has 2n facets and each facet σ of O n corresponds to a vertex c of Q n (+xi ∈ σ if and only if xi ∈ c). Observe 
that xi ∈ c′�c′′ if and only if {+xi, −xi} ⊆ σ ′�σ ′′ where σ ′ correspond to c′ and σ ′′ corresponds to c′′ .

Let X be a pure simplicial complex of dimension d. Two facets σ , σ ′ are adjacent if |σ�σ ′| = 2. A shelling of X is 
an ordering σ1, . . . , σp of all of its facets such that 2σ j

⋂
(
⋃

i< j 2σi ) is a pure simplicial complex of dimension d − 1 for 
every 2 ≤ j ≤ p [49, Lecture 8]. A partial shelling is an ordering of some facets that satisfies the above condition. Note 
that σ1, . . . , σm is a partial shelling if and only if for every i < j ≤ m there exists k < j such that σi ∩ σ j ⊆ σk ∩ σ j , and 
|σk ∩ σ j | = d − 1, i.e., σk ∩ σ j is a facet of both σ j and σk . A partial shelling σ1, . . . , σm of X is 1-step extendable if there 
exists a facet τ of X such that σ1, . . . , σm, τ is a partial shelling of X . A partial shelling σ1, . . . , σm of X is extendable if it 
can be extended to a shelling of X . A pure simplicial complex X is extendably shellable if every partial shelling is extendable. 
We next establish a relationship between partial shellings and isometric orderings.

Proposition 4.3. Every partial shelling of the cross-polytope O n defines an isometric ordering of the corresponding vertices of the cube 
Q n. Conversely, if C is an isometric class of Q n, then any isometric ordering of C defines a partial shelling of O n.

Proof. Let σ1, . . . , σm be a partial shelling of O n and c1, . . . , cm be the ordering of the corresponding vertices of Q n . We 
need to prove that each level set C j = {c1, . . . , c j} is isometric. It suffices to show that for every i < j there is k < j such that 
d(ck, c j) = 1 and ck ∈ B(ci, c j). Equivalently, for every i < j, there is k < j such that |σk�σ j | = 2 and σi ∩ σ j ⊆ σk ⊆ σi ∪ σ j : 
since σ1, . . . , σm is a partial shelling, there is a facet σk with k < j such that |σk ∩ σ j | = n − 1 and σi ∩ σ j ⊆ σk ∩ σ j . We 
claim that σk is the desired facet. It remains to show that (i) |σ j�σk| = 2 and (ii) σk ⊆ σi ∪ σ j . Item (i) follows since 
|σ j| = |σk| = n, and |σk ∩ σ j | = n − 1. For Item (ii), let σ j \ σk = {+x} and σk \ σ j = {−x}. We need to show that −x ∈ σi , or 
equivalently that +x /∈ σi . The latter follows since +x ∈ σ j \ σk and σ j ∩ σi ⊆ σk .

Conversely, let c1, . . . , cm be an isometric ordering and σ1, . . . , σm be the ordering of the corresponding facets of O n . We 
assert that this is a partial shelling. Let i < j. It suffices to exhibit k < j such that |σk ∩σ j | = n −1 and σi ∩σ j ⊆ σk ∩σ j . Since 
8
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C j is isometric, c j has a neighbor ck ∈ B(ci, c j) ∩ C j . Since d(c j, ck) = 1 it follows that |σk ∩ σ j | = n − 1. Since ck ∈ B(ci, c j)

it follows that σi ∩ σ j ⊂ σk ⊂ σi ∪ σ j and thus σi ∩ σ j ⊆ σk ∩ σ j . �
Corollary 4.4. For any partial shelling σ1, . . . , σm, let (c1, . . . , cm) be the ordering of the corresponding vertices of Q n and let C =
{c1, . . . , cm}. Then the following hold.

(1) C and C∗ = Q n \ C are ample.
(2) the partial shelling σ1, . . . , σm is 1-step extendable if and only if C∗ has a corner.
(3) the partial shelling σ1, . . . , σm is extendable if and only if C∗ is dismantlable.

Consequently, if all ample classes are dismantlable, then O n is extendably shellable.

Proof. By Proposition 4.3, the level sets {c1, . . . , ci}, 1 ≤ i ≤ m are isometric, thus C is ample by Proposition 4.2. The com-
plement C∗ is also ample, establishing (1).

If C∗ has a corner, then by Lemma 4.1(iii), C∗ contains a concept t such that C∗ \ {t} is ample. Consequently, its 
complement C ′ := C ∪ {t} is ample. Let τ be the facet of O n corresponding to t . By Proposition 4.2 (c1, . . . , cm, t) is an 
isometric ordering of C ′ . By Proposition 4.3, σ1, . . . , σm, τ is a partial shelling of O n and thus σ1, . . . , σm is 1-step extend-
able. Conversely, assume that there exists τ such that σ1, . . . , σm, τ is a partial shelling of O n and let t be the vertex of 
Q n corresponding to τ . By Proposition 4.3, (c1, . . . , cm, t) is an isometric ordering of C ′ = C ∪ {t}. By Proposition 4.2, C ′ is 
ample and thus its complement C∗ \ {t} is also ample, establishing that t is a corner of C∗ by Lemma 4.1(iii). This establishes 
(2).

Assertion (3) is a direct consequence of Assertion (2). Consequently, if all ample classes are dismantlable, then any partial 
shelling of O n is extendable and thus O n is extendably shellable. �

It was asked in [49] if any cross-polytope O n is extendably shellable. In the PhD thesis of H. Tracy Hall from 2004, a nice 
counterexample to this question is given [20]. Hall’s counterexample arises from the 299 regions of an arrangement of 12 
pseudo-hyperplanes. These regions are encoded as facets of the 12-dimensional cross-polytope O 12 and it is shown in [20]
that the subcomplex of O 12 consisting of all other facets admits a shelling which cannot be extended by adding any of the 
299 simplices. By Corollary 4.4(ii), the ample concept class C H defined by those 299 simplices does not have any corner 
(see Fig. 3 for a picture of C H ).5 A counting shows that C H is a maximum class of VC-dimension 3. This completes the proof 
of our first main result:

Theorem 4.5. There exists a maximum class C H of VC-dimension 3 without any corner.

Remark 4.6. Hall’s concept class C H also provides a counterexample to [30, Conjecture 4.2] asserting that for any two ample 
classes C1 ⊂ C2 with |C2 \ C1| ≥ 2 there exists an ample class C such that C1 ⊂ C ⊂ C2 . As noticed in [30], this conjecture is 
stronger than the corner peeling conjecture disproved by Theorem 4.5.

Remark 4.7. Notice also that since ample classes are closed by Cartesian products, and any corner in a Cartesian prod-
uct comes from corners in each factor, one can construct other examples of ample classes without corners by taking the 
Cartesian product of C H by any ample class.

4.2. C H Refutes the analysis by Kuzmin and Warmuth [23]

The algorithm of [23] uses the notion of forbidden labels for maximum classes, introduced in the PhD thesis of Floyd [15]
and used in [16,23]; we closely follow [15]. Let C be a maximum class of VC-dimension d on the set U . For any Y ⊆ U with 
|Y | = d + 1, the restriction C |Y is a maximum class of dimension d. Thus C |Y contains �d(d + 1) = 2d+1 − 1 concepts. There 
are 2d+1 possible concepts on Y . We call the characteristic function of the unique concept that is not a member of C |Y a 
forbidden label of size d + 1 for Y . Each forbidden label forbids all concepts that contain it from belonging to C . Let c be a 
concept which contains the forbidden label for Y . Since C is a maximum class, adding c to C would shatter the set Y that 
is of cardinality d + 1.

The algorithm of [23], called the Tail Matching Algorithm, recursively constructs a representation map r̃ for C x , expands r̃
to a map r on the carrier Nx(C) = 0C x ·∪ 1C x of C x , and extends r to tailx(C) using a special subroutine. This subroutine and 
the correctness proof of the algorithm (Theorem 11) heavily uses that a specially defined bipartite graph (which we will 
call �) has a unique perfect matching. This bipartite graph has the concepts of tailx(C) on one side and the forbidden labels 
of size d for C x on another side. Both sides have the same size. There is an edge between a concept and a forbidden label 

5 For the interested reader, a file containing the 299 concepts of C H represented as elements of {0, 1}12 is available at https://arxiv.org /src /1812 .02099 /
anc /CH .txt.
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Fig. 3. The maximum class C H ⊂ 212 without corners of VC-dimension 3 with (12
≤3

) = 299 concepts. A different edge color is used for each of the 12 
dimensions. The orientation of the edges is a unique sink orientation (defined in Section 6) and defines a representation map r1 for the class C H : for each 
concept c, r1(c) is the set of the labels of the outgoing edges. This representation map was found using the MiniSat solver. The appendix contains more 
discussions about this and another representation map of C H . Best viewed in color.

if and only if the forbidden label is contained in the respective concept. The graph � is defined in [23, Theorem 10], which 
also asserts that � has a unique perfect matching. In the following, we show that this assertion is false.

We will show that uniqueness of the matching implies that there is a corner in the tail (which is contradicted by Hall’s 
concept class C H ). We use the following lemma about perfect bipartite matchings:

Lemma 4.8 ([10]). Let G be a bipartite graph with bipartition X, Y and unique perfect matching M. Then, there are vertices x ∈ X and 
y ∈ Y with degree one.

By Lemma 4.8, the uniqueness of the matching claimed in [23, Theorem 10] implies that there is a forbidden labeling 
that is contained in exactly one concept c of the tail. We claim that c must be a corner: c is the only concept in the tail 
realizing this forbidden labeling and removing this concept from C reduces the number of shattered sets by at least one. 
After the removal, the number of concepts is |C | − 1. By the Sandwich Lemma, the number of shattered sets is always 
10
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at least as big as the number of concepts. So removing c reduces the number of shattered sets by exactly one set S and 
the resulting class is ample. For ample classes, the number of concepts equals the number of supports of cubes of the 
1-inclusion graph and for every shattered set there is a cube with this shattered set as its support. Thus c lies in a cube B
with support S . There is no other cube with support S because after removing c there is no cube left with support S . Thus 
B is the unique cube with support S and must be maximal. We conclude that c is a corner of C . Since C H is maximum and 
does not contain corners, this leads to a contradiction. This establishes that Theorem 10 from [23] is false.

4.3. Two families of dismantlable ample classes

We continue with two families of dismantlable ample classes: conditional antimatroids and 2-dimensional ample classes.

Proposition 4.9. Conditional antimatroids are dismantlable.

Proof. Let c1, . . . , cm be an ordering of the concepts of C , where i < j if and only if |ci | ≤ |c j | (breaking ties arbitrarily). 
Clearly, c1 = ∅ and the order c1, . . . , cm is monotone with respect to distances from c1. In particular, any order defined 
by a Breadth First Search (BFS) from c1 satisfies this condition. We prove that for each i, ci is a corner of the level set 
Ci = {c1, . . . , ci−1, ci}. The neighbors of ci in Ci are subsets of ci containing |ci | −1 elements. From the definition of extremal 
points of ci that we denote by ex(ci), it immediately follows that ci \ {x} ∈ C if and only if x ∈ ex(ci). For any s ⊆ ex(ci), 
since ci \ s = ⋂

x∈s(ci \ {x}) and C is closed under intersections, we conclude that ci \ s ∈ C . Therefore, the whole Boolean 
cube between ci and ci \ ex(ci) is included in C , showing that ci is a corner of Ci . �

The fact that 2-dimensional maximum classes have corners was proved in [35, Theorem 34] and it was generalized 
in [28] to 2-dimensional ample classes. We provide here a different proof of this result, originating from 1997-1998 and 
based on a local characterization of convex sets of general ample classes, which may be of independent interest.

Given two classes C ′ ⊆ C , C ′ is convex in C if B(c, c′) ∩C ⊆ C ′ for any c, c′ ∈ C ′ and C ′ is locally convex in C if B(c, c′) ∩C ⊆
C ′ for any c, c′ ∈ C ′ with d(c, c′) = 2.

Lemma 4.10. A connected subclass C ′ of an ample class C is convex in C if and only if C ′ is locally convex.

Proof. One direction of the statement is trivial. For the other direction, assume that C ′ is locally convex. For c, c′ ∈ C ′ , recall 
that dG(C ′)(c, c′) denotes the distance between c and c′ in G(C ′). Recall also that since C is ample, C is isometric and thus 
dG(C)(c, c′) = d(c, c′) for any c, c′ ∈ C . We prove that for any c, c′ ∈ C ′ , B(c, c′) ∩ C ⊆ C ′ by induction on k = dG(C ′)(c, c′), the 
case k = 2 being covered by the initial assumption. Pick any t ∈ B(c, c′) ∩ C and let L′ be a shortest (c, c′)-path of C passing 
via t . By Theorem 3.2, L′ is contained in B(c, c′). Let L′′ be a shortest (c, c′)-path in C ′ . Let c′′ be the neighbor of c in L′′ . 
Since dG(C ′)(c′′, c′) < k, by the induction assumption B(c′′, c′) ∩ C ⊆ C ′ . Since G(C) is bipartite, either c ∈ C ∩ B(c′′, c′) or c′′ ∈
C ∩ B(c, c′). In the first case, t ∈ C ∩ B(c, c′) ⊆ C ∩ B(c′′, c′) ⊆ C ′ and we are done. So suppose that dG(C ′)(c, c′) = d(c, c′). This 
implies that L′′ is a shortest (c, c′)-path in C . Moreover, we can assume that t /∈ B(c′′, c′) and consequently, c′′ /∈ L′ and the 
edge cc′′ is parallel to an edge uv of the path L′ . Consider a shortest gallery e0 := cc′′, e1, . . . , ek := uv connecting the edges 
cc′′ and uv in C . It is constituted of two shortest paths P ′ = (u0 := c, u1, . . . , uk := u) and P ′′ = (v0 := c′′, v1, . . . , vk = v). 
Then P ′′ together with the subpath of L′ comprised between v and c′ constitute a shortest path between c′′ and c′ , thus 
it belongs to C ′ . Therefore, if t is comprised in L′ between v and c′ , then we are done. Thus suppose that t belongs to the 
subpath of L′ between c and u. Since u1 is adjacent to c, v1 ∈ C ′ , by local convexity of C ′ we obtain that u1 ∈ C ′ . Applying 
this argument several times, we deduce that the whole path P ′ belongs to C ′ . In particular, u ∈ C ′ . Since v is between u
and c′ , u �= c′ , thus dG(C ′)(c, u) < k. By induction hypothesis, B(c, u) ∩ C ⊆ C ′ . Since t ∈ B(c, u), we are done. �
Proposition 4.11. 2-Dimensional ample classes are dismantlable.

Proof. As for conditional antimatroids, the corner peeling for 2-dimensional classes is based on an algorithmic order of 
concepts. Consider the following total order c1, . . . , cm of the concepts of a 2-dimensional ample class C constructed 
recursively as follows: start with an arbitrary concept and denote it c1 and at step i, having numbered the concepts 
Ci−1 = {c1, . . . , ci−1}, select as ci a concept in C \ Ci−1 which is adjacent to a maximum number of concepts of Ci−1. 
We assert that Ci := Ci−1 ∪ {ci} is ample and that ci is a corner of Ci . Since Ci−1 is ample and C is 2-dimensional, by 
Lemma 4.1, ci has at most two neighbors in Ci−1. First suppose that ci has two neighbors u and v in Ci−1. By Lemma 4.1, 
ci, u and v are included in a 2-cube F [ci] with a fourth concept t belonging to Ci−1. Since F [ci] is a maximal cube of C , by 
Corollary 3.3, F [ci] is not parallel to any other cube of C . On the other hand, the edges ci u and ci v are parallel to the edges 
vt and ut , respectively. This shows that C Y

i is connected for any Y ⊆ U , and therefore by Theorem 3.2(2), Ci is ample and ci
is a corner. Now suppose that ci has exactly one neighbor c in Ci−1. From the choice of ci at step i, any concept of C \ Ci−1
has at most one neighbor in Ci−1, i.e., Ci−1 is locally convex. By Lemma 4.10, Ci−1 is convex in C . But then Ci = Ci−1 ∪ {ci}
is isometric since ci has degree 1 in G(Ci). By Lemma 4.1, Ci is thus ample and ci is a corner of Ci . �
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4.4. Collapsibility

A free face of a cube complex Q (C) is a face Q of Q (C) strictly contained in only one other face Q ′ of Q (C). An 
elementary collapse is the deletion of a free face Q (thus also of Q ′) from Q (C). A cube complex Q (C) is collapsible to 
a vertex v0 if C can be reduced to v0 by a sequence of elementary collapses. Namely, there exists an ordered sequence 
� = ((Q 1, Q ′

1), . . . , (Q n, Q ′
n)) where each Q i is a free face of Q (C) \ {Q 1, Q ′

1, . . . , Q i−1, Q ′
i−1} contained in Q ′

i and Q (C) \
{Q 1, Q ′

1, . . . , Q n, Q ′
n} is {v0}. Observe that each face of Q (C) distinct from v0 appears exactly once in the sequence.

Collapsibility is a stronger version of contractibility. The sequences of elementary collapses of a collapsible cube complex 
Q (C) can be viewed as discrete Morse functions [17] without critical cells, i.e., acyclic perfect matchings of the face poset 
of Q (C). From the definition it follows that if C has a corner peeling, then the cube complex Q (C) is collapsible: the 
sequence of elementary collapses follows the corner peeling order (in general, detecting if a finite complex is collapsible 
is NP-complete [42]). Theorem 3.2(5) implies that the cube complexes of ample classes are contractible (see also [7] for a 
more general result). In fact, the cube complexes of ample classes are collapsible (this extends the collapsibility of finite 
CAT(0) cube complexes established in [1]):

Proposition 4.12. If C ⊆ 2U is an ample class, then the cube complex Q (C) is collapsible.

Proof. We proceed by induction on the size of C . If C contains only one concept, then the statement is trivially true. 
Otherwise, let x ∈ U and suppose by induction hypothesis that Q (Cx) is collapsible to v0. Let � := ((Q 1, Q ′

1), . . . , (Q n, Q ′
n))

be the corresponding collapsing sequence of Q (Cx), i.e., a partition of the faces of Q (Cx) \ {v0} into pairs (Q i, Q ′
i ) such 

that Q i is a free face in the current subcomplex Q (Cx) \ {Q 1, Q ′
1, . . . , Q i−1, Q ′

i−1} of Cx and Q ′
i is the unique face properly 

containing Q i .
Each cube Q ∗ of C is mapped to a cube Q of Cx with supp(Q ) = supp(Q ∗) \ {x}. Observe that dim(Q ) = dim(Q ∗) − 1

if x ∈ supp(Q ∗) and dim(Q ) = dim(Q ∗) otherwise. In the first case, Q is contained in C x and Q ∗ is entirely contained 
in the carrier Nx(C). Conversely, by Lemma 3.4, any cube Q of Cx is the image of at least one cube Q ∗ of C (with 
supp(Q ) = supp(Q ∗) \ {x}). If there exists Q ∗ such that supp(Q ∗) = supp(Q ) ∪ {x}, then there exist exactly three cubes of 
C that are mapped to Q : Q ∗ and the two opposite facets P∗ and R∗ of Q ∗ such that supp(P∗) = supp(R∗) = supp(Q ) =
supp(Q ∗) \ {x}. Otherwise, there exists a unique cube Q ∗ of C that is mapped to Q .

We derive a collapsing sequence �∗ for Q (C) by replacing each elementary collapse of � by one, two, or three elemen-
tary collapses in Q (C) and when v0 ∈ C x , we add a last elementary collapse. Consider a pair (Q i , Q ′

i ) ∈ �. If neither Q i nor 
Q ′

i are contained in C x , let Q ∗
i and Q ∗

i
′ be the unique preimages of Q i and Q ′

i in Q (C) and insert the pair (Q ∗
i , Q ∗

i
′) in �∗ .

If both Q i and Q i
′ are contained in C x , let P∗

i , R∗
i , Q

∗
i be the cubes of C mapped to Q and P∗

i
′, R∗

i
′, Q ∗

i
′ the ones mapped 

to Q ′ such that dim(P∗
i ) = dim(R∗

i ) = dim(Q ∗
i ) − 1 = dim(Q i), dim(P∗

i
′) = dim(R∗

i
′) = dim(Q ∗

i
′) − 1 = dim(Q ′

i ), P∗
i is con-

tained in P∗
i
′ , R∗

i is contained in R∗
i
′ , and Q ∗

i is contained in Q ∗
i

′ . We insert the three pairs (Q ∗
i , Q ∗

i
′), (P∗

i , P∗
i
′), (R∗

i , R
∗
i
′)

in �∗ in this order.
Suppose now that Q i is included in C x and Q ′

i is not included in C x . Let Q ∗
i

′ be the unique cube of C mapped to Q ′
i and 

let P∗
i , R∗

i , Q
∗
i be the cubes of C mapped to Q such that dim(P∗

i ) = dim(R∗
i ) = dim(Q ∗

i ) − 1 = dim(Q i). Assume without 
loss of generality that P∗

i is a facet of both Q ∗
i and Q ∗

i
′ . We insert the two pairs (R∗

i , Q
∗
i ), (P∗

i , Q ∗
i

′) in �∗ in this order.
Finally, we consider the vertex v0. If v0 /∈ C x , then the preimage of v0 contains only one vertex that we denote by v∗

0. 
Suppose now that v0 ∈ C x . Let v∗

0, u
∗
0 ∈ C such that v∗

0 = v0 and u∗
0 = v0 ∪ {x}. Then the preimage of v0 in Q is of size 3: 

it contains the vertices v∗
0, u

∗
0 and the edge {u∗

0, v
∗
0}. In this case, we add to �∗ the elementary collapse (u∗

0, {u∗
0, v

∗
0}).

Each cube Q ∗ of Q (C) is in the preimage of a single cube of Q (Cx). Moreover, each cube of Q (Cx) \ {v0} appears in 
exactly one collapsing pair of the sequence �. Consequently, each cube of Q (C) whose image is not v0 appears exactly 
once in the sequence �∗ . Notice also that when the preimage of v0 is of size 3, both u∗

0 and {u∗
0, v

∗
0} appear in the last 

pair of �∗ . Consequently, each cube of Q (C) \ {v∗
0} appears in exactly one pair of the sequence �∗ . Since each pair of �∗

(except potentially (u∗
0, {u∗

0, v
∗
0}) is derived from a collapsing pair of � and since � is a sequence of elementary collapses 

of Q (Cx), we can deduce that �∗ is a sequence of elementary collapses of the cube complex Q (C) to v∗
0. �

Example 4.13. We illustrate the construction in the proof of Proposition 4.12 with the ample class C from Fig. 4 and its 
restriction Cx . The names of the concepts are depicted in the figure. The faces will be denoted by the list of their vertices.

Consider the following two collapsing sequences of Cx:

• �1 = ({a}, {a, b}), ({b}, {b, c}), and
• �2 = ({a}, {a, b}), ({c}, {b, c}).

Note that �1 collapses Q (Cx) to c and �1 collapses Q (Cx) to b.
The corresponding collapsing sequences for C obtained by the construction described in the proof of Proposition 4.12 are 

the following:

• �∗ = ({a, a′}, {a, b, b′, a}), ({a′}, {a′, b′}), ({a}, {a, b}), ({b′}, {b, b′}), ({b}, {b, c}) collapses Q (C) to c, and
1
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Fig. 4. The ample class C used in Example 4.13 and its restriction Cx for x = 3.

• �∗
2 = ({a, a′}, {a, b, b′, a}), ({a′}, {a′, b′}), ({a}, {a, b}), ({c}, {b, c}), ({b′}, {b, b′}) collapses Q (C) to b.

In both cases, the subsequence ({a, a′}, {a, b, b′, a}), ({a′}, {a′, b′}), ({a}, {a, b}) corresponds to the elementary collapse 
({a}, {a, b}). In �∗

1, the subsequence ({b′}, {b, b′}), ({b}, {b, c}) corresponds to the elementary collapse ({b}, {b, c}) in �1. 
In �∗

2, the elementary collapse ({c}, {b, c}) corresponds to the elementary collapse ({c}, {b, c}) in �2 and the elementary 
collapse ({b′}, {b, b′}) is the elementary collapse associated to the last vertex b of �2.

5. Representation maps for maximum classes

In this section, we prove that maximum classes admit representation maps, and therefore optimal unlabeled sample 
compression schemes.

Theorem 5.1. Any maximum class C ⊆ 2U of VC-dimension d admits a representation map, and consequently, an unlabeled sample 
compression scheme of size d.

The crux of the proof of Theorem 5.1 is the following proposition. Let C be a d-dimensional maximum class and let 
D ⊆ C be a (d − 1)-dimensional maximum subclass. A missed simplex for the pair (C, D) is a simplex σ ∈ X(C) \ X(D). Note 
that since C and D are maximum, any missed simplex has size d. An incomplete cube Q for (C, D) is a cube of C such that 
supp(Q ) is a missed simplex. For any incomplete cube Q with σ = supp(Q ), C |σ is a d-cube and D|σ is a maximum class 
of dimension d − 1. Observe that any incomplete cube for (C, D) is a maximal cube in C and by Corollary 3.3, there is a 
bijection between the missed simplices for (C, D) and the incomplete cubes for (C, D).

Consider a missed simplex σ for (C, D) and the incomplete cube Q for (C, D) such that supp(Q ) = σ . Since |σ | = d, we 
have |C |σ | = ( d

≤d

) = ( d
≤d−1

) + 1 = |D|σ | + 1. Since Q |σ = C |σ , there exists a unique concept c ∈ Q such that c|σ /∈ D|σ . We 
call c the source of Q and we consider the source-map s from the set of incomplete cubes for (C, D) to C \ D where s(Q )

is the source of Q . In fact, we show in the following proposition that the source-map is a bijection between the incomplete 
cubes for (C, D) and the concepts of C \ D .

Proposition 5.2. Each c ∈ C \ D is the source of a unique incomplete cube for (C, D). Moreover, if r′ : D → X(D) is a representation 
map for D and r : C → X(C) extends r′ by setting r(c) = supp(s−1(c)) for each c ∈ C \ D, then r is a representation map for C.

Proof of Theorem 5.1. Following the general recursive construction idea of [23], we derive a representation map for C by 
induction on |U |. If |U | = 0, then C is a 0-dimensional maximum class containing a unique concept c. In this case, we 
set r(c) = ∅ and r is clearly a representation map for C . For the induction step, (see Fig. 5), pick x ∈ U and consider the 
maximum classes Cx and C x ⊂ Cx with domain U \ {x}. By induction, C x has a representation map rx . Use Proposition 5.2 to 
extend rx to a representation map rx of Cx . Define a map r on C as follows:

r(c) =
{

rx(cx) if cx /∈ C x or x /∈ c,

rx(cx) ∪ {x} if cx ∈ C x and x ∈ c.

It is easy to verify that r is non-clashing: indeed, if c′ �= c′′ ∈ C satisfy c′
x �= c′′

x then c′
x|rx(c′

x) ∪ rx(c′′
x ) �= c′′

x |rx(c′
x) ∪ rx(c′′

x ). 
Since rx(c′

x) ⊆ r(c′), rx(c′′
x ) ⊆ r(c′′), it follows that also c′, c′′ disagree on r(c′) ∪ r(c′′). Else, c′

x = c′′
x ∈ C x and c′(x) �= c′′(x). In 

this case, x ∈ r(c′) ∪ r(c′′) and therefore c′, c′′ disagree on r(c′) ∪ r(c′′).
It remains to show that r is a bijection between C and X(C) = ( U

≤d

)
. It is easy to verify that r is injective. So, it remains 

to show that |r(c)| ≤ d, for every c ∈ C . This is clear when cx /∈ C x or x /∈ c. If cx ∈ C x and x ∈ c, then r(c) = rx(cx) ∪ {x} and 
|rx(cx)| ≤ d − 1 (since C x is (d − 1)-dimensional). Hence, |r(c)| ≤ d as required, concluding the proof. �
13
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Fig. 5. Illustrating the proof of Theorem 5.1 (when x = 5): to construct a representation map for C , we inductively construct a representation map rx for 
C x , extend it to a representation map rx for Cx using Proposition 5.2 with D = C x , and finally extend it to a representation map r for C . The representation 
maps rx, rx , and r are defined by the coordinates of the underlined bits or by the labels of the outgoing edges (see Theorem 6.8).

Proof of Proposition 5.2. To prove the proposition, we first prove that incomplete cubes and their sources are preserved 
by restrictions and reductions (Lemma 5.4). To show that each concept of C \ D is the source of one incomplete cube, we 
consider a minimal counterexample and we establish that in this counterexample each concept is the source of at most 2
incomplete cubes. Moreover, if a concept is the source of 0 (respectively, 1, 2) incomplete cubes, then any of its neighbors 
in G(C) is the source of 2 (respectively, 1, 0) incomplete cubes (Lemma 5.5). Using this and the notions of galleries and 
the associated trees defined below, we establish the first assertion of the proposition. Then using Lemma 5.4 and the first 
assertion, we establish the second part of the proposition. We also give a geometric characterization of sources (Lemma 5.3) 
that is used later to estimate the complexity of computing the representation map (see Remark 5.7).

Call a maximal cube of C a chamber and a facet of a chamber a panel (a σ ′-panel if its support is σ ′). Any σ ′-panel in 
C satisfies |σ ′| = d − 1 and σ ′ ∈ X(D). Recall that a gallery between two parallel cubes Q ′, Q ′′ (say, two σ ′-cubes) is any 
simple path of σ ′-cubes (Q 0 := Q ′, Q 1, . . . , Q k := Q ′′), where Q i ∪ Q i+1 is a d-cube. By Theorem 3.2(3), any two parallel 
cubes of C are connected by a gallery in C . Since D is a maximum class, any panel of C is parallel to a panel that is a 
maximal cube of D . Also for any maximal simplex σ ′ ∈ X(D), the class Cσ ′

is a maximum class of dimension 1 and Dσ ′
is a 

maximum class of dimension 0 (single concept). Thus Cσ ′
is a tree (e.g. [18, Lemma 7]) which contains the unique concept 

c ∈ Dσ ′
. We call c the root of Cσ ′

and we denote by P (σ ′) the unique σ ′-panel P of D such that Pσ ′ = c.
The next result provides a geometric characterization of sources:

Lemma 5.3. Let σ be a missed simplex of the pair (C, D). A concept c ∈ Q is the source of the unique σ -cube Q if and only if for any 
x ∈ σ , if σ ′ := σ \ {x} and P ′, P ′′ are the two σ ′-panels of Q with c ∈ P ′′ , then (P ′)σ ′

is on the path between (P ′′)σ ′
and the root 

(P (σ ′))σ ′
of the tree Cσ ′

.

14
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Proof. Observe that there exists a unique concept c ∈ Q such that for any x ∈ σ , if σ ′ := σ \ {x} and P ′, P ′′ are the two 
σ ′-panels of Q with c ∈ P ′′ , then (P ′)σ ′

is on the path between (P ′′)σ ′
and the root (P (σ ′))σ ′

of the tree Cσ ′
. Since Q

contains a unique source, it is enough to show that this unique concept c is the source.
Assume by way of contradiction that this is not the case, i.e., that c is the source of Q and that there exists x ∈ σ and 

two σ ′-panels P ′, P ′′ with σ ′ = σ \ {x} and c ∈ P ′′ such that the unique gallery L between P ′ and the root P (σ ′) passes via 
P ′′ , i.e., L = (P0 = P (σ ′), P1, . . . , Pm−1 = P ′′, Pm = P ′). Since Q is a maximal cube, by Corollary 3.3, x is not in the domain 
of the chamber Pi ∪ Pi+1 for i < m −1. This implies that there exists c0 ∈ P (σ ′) ⊆ D such that c0|σ = c|σ , and consequently, 
c|σ is not the missed sample for σ . �

In the next lemma, we show that incomplete cubes and their sources are preserved by restrictions and reductions.

Lemma 5.4. Let Q be an incomplete cube for (C, D) with source s and support σ , and let x, y ∈ U such that x /∈ σ and y ∈ σ . Then, 
the following holds:

(i) Q x is an incomplete cube for (Cx, Dx) whose source is sx.
(ii) Q y is an incomplete cube for (C y, D y) whose source is sy .

Proof. Item (i): Cx and Dx are maximum classes on U \ {x} of VC-dimensions d and d − 1, and supp(Q x) = σ . Therefore, 
Q x is an incomplete cube for (Cx, Dx). By definition, s is the unique concept c ∈ Q such that c|σ /∈ D|σ . Since x /∈ σ , 
D|σ = Dx|σ and sx is the unique concept c of Q x so that c|σ /∈ Dx|σ , i.e., sx is the source of Q x .

Item (ii): C y and D y are maximum classes on U \ {y} of VC-dimensions d − 1 and d − 2. Since y ∈ supp(Q ), dim(Q y) =
d − 1 and Q y is an incomplete cube for (C y, D y). Let σ ′ = σ \ {y}. It remains to show that sy |σ ′ /∈ D y |σ ′ . Indeed, otherwise 
both extensions of sy in σ , namely s, s�{y}, are in D|σ which contradicts that s = s(Q ). �

Next we prove that each concept of C \ D is the source of a unique incomplete cube. Since there is a bijection between 
incomplete cubes and missed simplices, the number of incomplete cubes is |X(C) \ X(D)| = |C \ D|. Therefore, it is sufficient 
to show that each concept of C \ D is the source of at most one incomplete cube. Assume the contrary and let (C, D) be a 
counterexample minimizing the size of U . First, if a concept c ∈ C \ D is the source of two incomplete cubes Q 1, Q 2, then 
dom(C) = supp(Q 1) ·∪ supp(Q 2). Indeed, let σ1 = supp(Q 1) and σ2 = supp(Q 2). By Lemma 5.4(i) and minimality of (C, D), 
dom(C) = σ1 ∪σ2. Indeed, if there exists x /∈ σ1 ∪σ2, cx is the source of the incomplete cubes (Q 1)x and (Q 2)x for (Cx, Dx), 
contrary to minimality of (C, D). By Lemma 5.4(ii) and minimality of (C, D), σ1 ∩σ2 =∅. Indeed, if there exists x ∈ σ1 ∩σ2, 
cx is the source of the incomplete cubes Q x

1 and Q x
2 for (C x, Dx), contrary to minimality of (C, D).

Next we assert that any c ∈ C \ D is the source of at most 2 incomplete cubes. Indeed, let c be the source of incom-
plete cubes Q 1, Q 2, Q 3. Then dom(C) = supp(Q 1) ·∪ supp(Q 2), i.e., supp(Q 2) = dom(C) \ supp(Q 1). For similar reasons, 
supp(Q 3) = dom(C) \ supp(Q 1) = supp(Q 2). Thus, by Corollary 3.3, Q 2 = Q 3.

Lemma 5.5. Let c′, c′′ ∈ C \ D be neighbors and let c′�c′′ = {x}. Then, c′ is the source of 2 incomplete cubes if and only if c′′ is the source 
of 0 incomplete cubes. Consequently, every connected component in G(C \ D) either contains only concepts c with |s−1(c)| ∈ {0, 2}, or 
only concepts c with |s−1(c)| = 1.

Proof. By minimality of (C, D), (c′)x = (c′′)x is the source of a unique incomplete cube for (C x, Dx) and c′
x = c′′

x is the source 
of a unique incomplete cube for (Cx, Dx). Let Q 1 be the incomplete cube for (C, D) such that (c′)x is the source of (Q 1)x . 
Let Q 2 be the incomplete cube for (C, D) such that (c′)x is the source of (Q 2)

x . Since (Q 1)x has a unique source c′
x = c′′

x , 
by Lemma 5.4(i), (s(Q 1))x = c′

x and consequently, s(Q 1) ∈ {c′, c′′}. Similarly, since Q x
2 has a unique source (c′)x = (c′′)x , by 

Lemma 5.4(ii), (s(Q 2))
x = (c′)x and thus s(Q 2) ∈ {c′, c′′}. Consequently, c′ is the source of 2 incomplete cubes (Q 1 and Q 2) 

if and only if c′′ is the source of 0 incomplete cubes. �
Pick c ∈ C \ D that is the source of two incomplete cubes for (C, D) and an incomplete cube Q such that c =

s(Q ). Let σ = supp(Q ), x ∈ σ , and σ ′ = σ \ {x}. The concept c belongs to a unique σ ′-panel P . Let L = (P0 =
P (σ ′), P1, . . . , Pm−1, Pm = P ) be the unique gallery between the root P (σ ′) of the tree Cσ ′

and P . For i = 1, . . . , m, de-
note the chamber Pi−1 ∪ Pi by Q i . Since Q i ∩ D is ample and Q i is not contained in D , it follows that the complement 
Q i \ D is a nonempty ample class. Hence Q i \ D induces a nonempty connected subgraph of G(C \ D). Therefore, it follows 
that c and each concept c′ ∈ Q i \ D are connected by a path in G(C \ D), and by Lemma 5.5 it follows that

For each i, each c′ ∈ Q i \ D is the source of either 0 or 2 incomplete cubes. (5.1)

Consider the chamber Q 1 = P0 ∪ P1 and its source s = s(Q 1). By the definition of the source, necessarily s ∈ P1 and 
s /∈ D . Therefore, Property (5.1) implies that there must exist another cube Q ′ such that s = s(Q ′). Let s′ be the neighbor of 
s in P0 = P (σ ′); note that s′ ∈ D . Since supp(Q 1) ∩ supp(Q ′) = ∅, it follows that s| supp(Q ′) = s′| supp(Q ′) ∈ D| supp(Q ′), 
contradicting that s = s(Q ′). This establishes the first assertion of Proposition 5.2.
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We prove now that the map r defined in Proposition 5.2 is a representation map for C . It is easy to verify that it is a 
bijection between C and X(C), so it remain to establish the non-clashing property: c|(r(c) ∪ r(c′)) �= c′|(r(c) ∪ r(c′)) for all 
distinct pairs c, c′ ∈ C . This holds when c, c′ ∈ D because r′ is a representation map. Next, if c ∈ C \ D and c′ ∈ D , this holds 
because c|r(c) /∈ D|r(c) by the properties of s.

Thus, it remains to show that every distinct c, c′ ∈ C \ D satisfy the non-clashing condition. Assume towards contradiction 
that this does not hold and consider a counterexample with minimal domain size |U |. Consequently, there exist distinct 
c, c′ ∈ C \ D such that c(z) = c′(z) for any z ∈ supp(Q ) ∪ supp(Q ′), where Q = s−1(c) and Q ′ = s−1(c′). Since c �= c′ , there 
exists x ∈ U \ (supp(Q ) ∪ supp(Q ′)) such that c(x) �= c(x′). If there exists y ∈ U \ (supp(Q ) ∪ supp(Q ′)) distinct from x, 
then from Lemma 5.4(1), Q y and Q ′

y are incomplete cubes for (C y, D y) whose respective sources are c y and c′
y . Since 

r(c y) = r(c), r(c′
y) = r(c′), and c y �= c′

y (since they differ on x), c y and c′
y clash in C y , contradicting the minimality of the 

counterexample (C, D). Consequently, we can assume that U = supp(Q ) ∪ supp(Q ′) ∪ {x} and that c and c′ differ only on 
x. In this case, by Lemma 5.4(1), cx = c′

x is the source of both incomplete cubes Q x and Q ′
x . Since Q and Q ′ are distinct 

incomplete cubes, we have supp(Q x) = supp(Q ) �= supp(Q ′) = supp(Q ′
x) and thus, cx = c′

x is the source of two different 
incomplete cubes of Cx , contradicting the first statement of the proposition. This ends the proof of Proposition 5.2. �
Remark 5.6. Proposition 5.2 relies on a canonical bijection between missed simplices and incomplete cubes (that allows to 
define the source-map). This is due to the fact that any missed simplex for (C, D) is a maximal simplex of C and is thus the 
support of a unique cube in C . This property does not longer hold for general ample classes since there are missed simplices 
that are not maximal and therefore there are the supports of several cubes in C . A first step to generalize Proposition 5.2 to 
ample classes could be to find a way to define a source-map between the missed simplices in X(C) \ X(D) and the concepts 
in C \ D .

Remark 5.7. To compute the representation map for a maximum class C of dimension d, we make d recursive calls. For 
each call, the costliest operation is to compute the source-map that can be done in O (|C |3) time as follows. First we naively 
compute in O (|C |3) the cubes of dimension d in C and the cubes of dimension d − 1 in C x . Then we compute in O (d|C |)
time the trees Cσ ′

for any maximal simplex σ ′ ∈ X(C x) (the roots of those trees are the cubes of C x of dimension d − 1) 
and we can then compute the source of each cube by Lemma 5.3. Consequently, one can compute a representation map for 
a maximum class C of dimension d in O (d|C |3).

Remark 5.8. In the appendix, we give two representation maps for Hall’s concept class C H presented in Fig. 3. One of 
this representation map is obtained by the method described in the proof of Theorem 5.1. The other one is obtained by 
transforming the problem into a SAT formula and using a SAT solver.

6. Representation maps for ample classes

In this section, we provide combinatorial and geometric characterizations of representation maps of ample classes. We 
first show that representation maps lead to optimal unlabeled sample compression schemes and that they are equivalent to 
unique sink orientations (USO) of G(C) (see below for the two conditions defining USOs). We also show that corner peelings 
of ample classes are equivalent to the existence of acyclic USOs. In Section 6.3, we show how from representation maps for 
an ample class C to derive representation maps for substructures of C (intersections with cubes, restrictions and reductions). 
In Section 6.4, we show that there exist maps satisfying each one of the two conditions defining USOs (but not both). Finally, 
using the geometric characterization of representation maps as USOs, we show that constructing a representation map for 
an ample concept class can be reduced to solving an instance of the Independent System of Representatives problem [2].

6.1. Unlabeled sample compression schemes and representation maps

In the next theorem, we prove that, analogously to maximum classes, representation maps for ample classes lead to 
unlabeled sample compression schemes of size VC-dim(C). This also shows that the representation maps for ample classes 
are equivalent to �-representation maps.

Theorem 6.1. Let C ⊆ 2U be an ample class and let r : C → X(C) be a bijection. The following conditions are equivalent:

(R1) ∪-non-clashing: For all distinct concepts c′, c′′ ∈ C , c′|r(c′) ∪ r(c′′) �= c′′|r(c′) ∪ r(c′′).
(R2) Reconstruction: For every realizable sample s of C , there is a unique c ∈ C that is consistent with s and r(c) ⊆ dom(s).
(R3) Cube injective: For every cube B of 2U , the map c �→ r(c) ∩ supp(B) is an injection from C ∩ B to X(C ∩ B).
(R4) �-non-clashing: For all distinct concepts c′, c′′ ∈ C , c′|r(c′)�r(c′′) �= c′′|r(c′)�r(c′′).

Moreover, any �-non-clashing map r : C → X(C) is bijective and is therefore a representation map. Furthermore, if r is a representation 
map for C , then there exists an unlabeled sample compression scheme for C of size VC-dim(C).
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Proof. Fix Y ⊆ U and partition C into equivalence classes where two concepts c, c′ are equivalent if c|Y = c′|Y . Thus, each 
equivalence class corresponds to a sample of C with domain Y , i.e., a concept in C |Y . We first show that the number of 
such equivalence classes equals the number of concepts whose representation set is contained in Y :

|C |Y | = |X(C |Y )| (Since C |Y is ample)

= |X(C) ∩ 2Y |
= |{c : r(c) ⊆ Y }| (Since r : C → X(C) = X(C) is a bijection)

Condition (R2) asserts that in each equivalence class there is exactly one concept c such that r(c) ⊆ Y .

(R1) ⇒ (R2): Assume ¬(R2) and consider a sample s for which the property does not hold. This implies that there exists 
an equivalence class with either zero or (at least) two equivalent concepts c for which r(c) ⊆ Y with Y = dom(s). Note 
that since the number of equivalence classes equals the number of concepts whose representation set is contained in Y , if 
some equivalence class has no concept c for which r(c) ⊆ Y , then there must be another equivalence class with two distinct 
concepts c′, c′′ ∈ C for which r(c′), r(c′′) ⊆ Y . Therefore, in both cases, there exist two equivalent concepts c, c′ ∈ C such that 
r(c), r(c′) ⊆ Y . Since c|Y = c′|Y , we have c|r(c) ∪ r(c′) = c′|r(c) ∪ r(c′), contradicting (R1).

(R2) ⇒ (R1): Assume ¬(R1), i.e., for two distinct concepts c′, c′′ ∈ C , we have c′|r(c′) ∪ r(c′′) = c′′|r(c′) ∪ r(c′′). Now for the 
sample s = c′|r(c′) ∪ r(c′′), we have dom(s) = r(c′) ∪ r(c′′). Furthermore, c′| dom(s) = c′′| dom(s) and r(c′), r(c′′) ⊆ dom(s). 
This implies ¬(R2).

(R1) & (R2) ⇒ (R3): Since C ∩ B is ample, it suffices to show that for every Y ∈ X(C ∩ B) there is some c ∈ C ∩ B with 
r(c) ∩ supp(B) = Y . This is established by the following claim.

Claim 6.2. Conditions (R1) and (R2) together imply that for any Y ∈ X(C ∩ B), there exists a unique concept cY ∈ C ∩ B such that 
r(cY ) ∩ supp(B) = Y .

Proof. For any concept c ∈ C ∩ B , let rB(c) := r(c) ∩ supp(B). Let Z = U \ supp(B). Note that all concepts in B agree on 
domain Z : indeed, B|Z is the single sample tag(B). We prove the claim by induction on |Y |.

Suppose first that Y =∅. Since X(C ∩ B) �= ∅, C ∩ B �=∅ and tag(B) is a sample of C . By condition (R2), there is a unique 
concept c ∈ C such that (i) c|Z = tag(B) (i.e., c ∈ B), and (ii) r(c) ⊆ Z (i.e., rB(c) =∅). Thus choosing c∅ = c settles this case.

Assume now that Y �= ∅ and that for every V � Y , there is a unique cV ∈ C ∩ B with rB(cV ) = r(cV ) ∩ supp(B) = V .
We assert that for any two distinct concepts c, c′ ∈ C ∩ B such that rB(c) ∪rB(c′) ⊆ Y , we have c|Y �= c′|Y . Indeed, suppose 

by way of contradiction that c|Y = c′|Y and note that rB(c) ∪ rB(c′) = (r(c) ∪ r(c′)) ∩ supp(B) ⊆ Y . If c|Y = c′|Y , then

c|(r(c) ∪ r(c′)) ∩ supp(B) = c′|(r(c) ∪ r(c′)) ∩ supp(B).

Since c|Z = c′|Z = tag(B), this implies that c|r(c) ∪ r(c′) = c′|r(c) ∪ r(c′), contradicting condition (R1).
Consequently, all the samples cV |Y are pairwise distinct. There are 2|Y | − 1 such samples and each sample cV |Y corre-

sponds to a proper subset V of Y . By the previous assertion, there exist at most 2|Y | concepts c such that rB(c) ⊆ Y , and 
thus there exists at most one concept cY ∈ C ∩ B such that rB(cY ) = Y .

Thus, it remains to establish the existence of cY ∈ C ∩ B such that rB(cY ) = r(cY ) ∩ supp(B) = Y . Since there are 2|Y | − 1
cV ’s for V � Y , it follows that there is a unique sample s′ with dom(s′) = Y that is not realized by any of the cV ’s. Consider 
the sample s with domain Y ∪ Z defined by

s(x) =
{

s′(x) if x ∈ Y ,

tag(B)(x) if x ∈ Z .

Since Y is shattered by C ∩ B , it follows that s is realized by C . By condition (R2) there is a unique concept c ∈ C that 
agrees with s such that r(c) ⊆ Y ∪ Z (i.e. r(c) ∩ supp(B) ⊆ Y ). We claim that c is the desired concept cY . First notice that 
c ∈ C ∩ B , because c agrees with tag(B) on Z . Since s is not realized by any cV , V � Y , and since cV is the unique concept of 
B such that rB(cV ) = V (by induction hypothesis), necessarily we have that c �= cV for any V � Y . Consequently, rB(c) = Y , 
concluding the proof of the claim. �
(R3) ⇒ (R4): For any distinct concepts c′, c′′ ∈ C , consider the minimal cube B := B(c′, c′′) which contains both c′, c′′ . This 
means that c′(x) �= c′′(x) for every x ∈ supp(B), and that c′(x) = c′′(x) for every x /∈ supp(B). Condition (R3) guarantees that 
the map r(c) �→ r(c) ∩ supp(B) is an injection from C ∩ B to X(C ∩ B). Therefore r(c′) ∩ supp(B) �= r(c′′) ∩ supp(B). It follows 
that there must be some x ∈ supp(B) such that x ∈ (r(c′) ∩ supp(B))�(r(c′′) ∩ supp(B)). Since x ∈ supp(B), c′(x) �= c′′(x) and 
therefore c′|r(c′)�r(c′′) �= c′′|r(c′)�r(c′′) and condition (R4) holds for c′ and c′′ .

(R4) ⇒ (R1): This is immediate because if two concepts clash on their symmetric difference, then they also clash on their 
union.
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Moreover, observe that for any map r : C → X(C), if r(c) = r(c′) for c �= c′ , then r(c)�r(c′) = ∅ and r is not �-non-
clashing. Consequently, any �-non-clashing map r : C → X(C) is injective and thus bijective since |C | = |X(C)|.

We now show that if r : C → X(C) is a representation map for C then there exists an unlabeled sample compression 
scheme for C . Indeed, by (R2), for each realizable sample s ∈ RS(C), let γ (s) be the unique concept c ∈ C such that r(c) ⊆
dom(s) and c| dom(s) = s. Then consider the compressor α : RS(C) → X(C) such that for any s ∈ RS(C), α(s) = r(γ (s)) and 
the reconstructor β : X(C) → C such that for any Z ∈ X(C), β(Z) = r−1(Z). Observe that by the definition of γ (s), α(s) ⊆
dom(s) and β(α(s)) = γ (s) coincides with s on dom(s). Consequently, α and β defines an unlabeled sample compression 
scheme for C of size dim(X(C)) = VC-dim(C). This concludes the proof of the theorem. �

By applying (R3) to the 1-dimensional cubes of B , we get the following corollary.

Corollary 6.3. For any representation map r of an ample class C , for any c ∈ C and x ∈ r(c), we have c�{x} ∈ C.

6.2. Representation maps as unique sink orientations

We call a map r : C → 2U edge-non-clashing if for any x-edge cc′ , x ∈ r(c)�r(c′). Note that r defines an orientation or of 
the edges of G(C): an x-edge cc′ is oriented from c to c′ if and only if x ∈ r(c) \ r(c′). Conversely, given an orientation o of 
the edges of G(C), the out-map ro of o associates to each c ∈ C the coordinate set of the edges outgoing from c. Note that 
the out-map of any orientation is edge-non-clashing. Note also that any �-representation map r : C → X(C) is edge-non-
clashing and thus defines an orientation or of G(C). Moreover, by Corollary 6.3, the out-map of or coincides with r.

An orientation o of the edges of G(C) (or the corresponding out-map ro) is a unique sink orientation (USO) if it satisfies 
the following two conditions.

(C1) For any c ∈ C , the cube of 2U which has support ro(c) and contains c is a cube of C , i.e., all outgoing neighbors of c
belong to a cube of C ;

(C2) For any cube B of C , there exists a unique c ∈ C ∩ B such that ro(c) ∩ supp(B) = ∅, i.e., c is a sink in G(C ∩ B).

Observe also that a map r : C → 2U satisfying Condition (C2) is necessarily an edge-non-clashing map. If C is a cube, 
then Condition (C1) trivially holds and Condition (C2) corresponds to the usual definition of USOs on cubes [41]. In the 
following, we use the characterization of USOs for cubes given in [41].

Lemma 6.4 ([41]). For a cube B and a map r : B → 2supp(B) , the following are equivalent:

(1) r is the out-map of a unique sink orientation of B;
(2) r is �-non-clashing;
(3) for any subcube B ′ of B, the map c �→ r(c) ∩ supp(B ′) is a bijection between B ′ and 2supp(B ′);
(4) r is the out-map of a unique source orientation of B, i.e., for any subcube B ′ of B, there exists a unique c ∈ B ′ such that r(c) ∩

supp(B ′) = supp(B).

The equivalences (1) ⇔ (2) and (1) ⇔ (4) are respectively [41, Lemma 2.3] and [41, Lemma 2.1]. The implications (2) ⇒
(3) and (3) ⇒ (1) are trivial.

Remark 6.5. In view of Lemma 6.4, Condition (C2) looks similar to Condition (R3) of Theorem 6.1. Note however that (C2) 
is about the cubes of 2U contained in C while (R3) is about all cubes of 2U . Similarly, Condition (C2) implies that ro is 
�-non-clashing on each cube of 2U contained in C while condition (R4) of Theorem 6.1 requires that ro is �-non-clashing 
on C .

Remark 6.6. If C is an ample class and o is a USO of G(C), then for any cube B of C , the restriction of o to the edges of 
G(B) trivially satisfies (C1) and (C2) and is thus a USO of G(B). Consequently, its out-map rB : c �→ ro(c) ∩ supp(B) from B
to 2supp(B) satisfies the conditions of Lemma 6.4.

We now show that representation maps for ample classes give rise to USOs.

Corollary 6.7. If r : C → X(C) is a representation map for an ample class C ⊆ 2U , then or is a unique sink orientation.

Proof. Pick some concept c ∈ C and consider the unique cube B of 2U that contains c and has support supp(B) = r(c). 
Since r is a representation map, by Condition (R3) of Theorem 6.1, the map c′ �→ r(c′) ∩ supp(B) is a bijection between the 
ample set C ∩ B and X(C ∩ B). Consequently, r(c) = supp(B) ∈ X(C ∩ B), which is possible only if C ∩ B = B . This proves 
(C1). Condition (C2) follows from Condition (R4) of Theorem 6.1 applied to the cubes of C and Lemma 6.4. �
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We continue with a characterization of representation maps of ample classes as out-maps of USOs, extending a similar 
result of Szabó and Welzl [41] for cubes. This characterization is “local-to-global”, since (C1) and (C2) are conditions on the 
cubes around each concept c ∈ C .

Theorem 6.8. For an ample class C and a map r : C → 2U , the following are equivalent:

(1) r is a representation map;
(2) r is the out-map of a USO;
(3) r(c) ∈ X(C) for any c ∈ C and r satisfies (C2).

Before proving the theorem, starting from an edge-non-clashing map for an ample class C , we show how to derive maps 
for restrictions Cx , reductions C x and intersections C ∩ B with cubes of 2U . Consider an edge-non-clashing map r : C → X(C)

for an ample class C . Given a cube B of 2U , define rB : C ∩ B → X(C ∩ B) by setting rB(c) := r(c) ∩ supp(B) for any c ∈ C ∩ B . 
Note that rB is the out-map of the orientation or restricted to the edges of G(C ∩ B).

Given x ∈ U = dom(C), define rx : C x �→ 2U\{x} by

rx(c) =
{

r(c) \ {x} if x ∈ r(c),

r(c ∪ {x}) \ {x} otherwise.

Hence, rx(c \ {x}) = r(c) \ {x} for each c ∈ C with x ∈ r(c). Consequently, for an x-edge of C between c and c ∪ {x}, rx(c) is 
the label of the origin of this edge minus x; we call rx the x-out-map of r.

Given x ∈ U = dom(C), define rx : Cx �→ 2U\{x} by

rx(c) =
{

r(c) if x /∈ r(c),

r(c ∪ {x}) otherwise.

Hence, rx(c \ {x}) = r(c) for each c ∈ C with x /∈ r(c). Consequently, for an x-edge of C between c and c ∪ {x}, rx(c) is the 
label of the destination of this edge; we call rx the x-in-map of r.

In the next lemma, we show that if the map r is the out-map of a USO, then rB and rx are also outmaps of USOs. A 
similar result holds for rx but it will be proved in Section 6.3. The first assertion of the lemma generalizes Remark 6.6.

Lemma 6.9. Consider a map r : C → 2U that is the out-map of a USO of an ample class C. For any cube B ⊆ 2U and any x ∈ U =
dom(C), the following hold:

(1) rB is the out-map of a USO of C ∩ B;
(2) rx is the out-map of a USO of C x.

Proof. Item (1): Consider a cube B ⊆ 2U . Since (C1) holds for C and r, for any concept c ∈ C ∩ B , the cube B(c) that has 
support r(c) and contains c is a cube of C . Since the intersection of two cubes is a cube, the cube B ′(c) = B(c) ∩ B has 
support r(c) ∩ supp(B) = r′(c) and contains c. Consequently, (C1) holds for C ′ and r′ . Since any cube of C ′ = C ∩ B is also a 
cube of C and since (C2) holds for C and r, (C2) also holds for C ′ and r′ .

Item (2): Consider c ∈ C x and let c′ ∈ {c, c ∪ {x}} such that rx(c) = r(c′) \ {x}. By (C1), there exists an r(c′)-cube B ′ containing 
c′ in C . Thus, there exists an (r(c′) \ {x})-cube containing c in C x . Consequently, rx satisfies (C1).

Suppose that there exists a cube B in C x violating (C2), i.e., there exist c1, c2 ∈ C x ∩ B such that rx(c1) ∩ supp(B) =
rx(c2) ∩ supp(B). By definition of rx , there exist c′

1 ∈ {c1, c1 ∪ {x}}, c′
2 ∈ {c2, c2 ∪ {x}} such that r(c′

1) = rx(c1) ∪ {x} and r(c′
2) =

rx(c2) ∪ {x}. Since B is a cube of C x containing c1 and c2, there exists a cube B ′ of C containing c′
1 and c′

2 such that 
supp(B ′) = supp(B) ∪ {x}. Consequently, r(c′

1) ∩ supp(B ′) = (rx(c1) ∪ {x}) ∩ (supp(B) ∪ {x}) = (rx(c1) ∩ supp(B)) ∪ {x} and 
similarly, r(c′

2) ∩ supp(B ′) = (rx(c2) ∩ supp(B)) ∪ {x}. Therefore, r(c′
1) ∩ supp(B ′) = r(c′

2) ∩ supp(B ′) and r is not injective on 
the cube B ′ of C , contradicting Lemma 6.4 (see Remark 6.6). �
Proof of Theorem 6.8. The implication (1) ⇒ (2) is established in Corollary 6.7. Now, we prove (2) ⇒ (1). Clearly, property 
(C1) implies that r(c) ∈ X(C) for any c ∈ C , whence r is a map from C to X(C).

Let C be an ample class of smallest size admitting a non-representation map r : C → X(C) satisfying (C1) and (C2). Hence 
there exist u0, v0 ∈ C such that u0|(r(u0)�r(v0)) = v0|(r(u0)�r(v0)), i.e., (u0�v0) ∩ (r(u0)�r(v0)) = ∅; (u0, v0) is called a 
clashing pair.

Claim 6.10. If (u0, v0) is a clashing pair, then C = C ∩ B(u0, v0) and r(u0) = r(v0) =∅.

Proof. Since C ∩ B(u0, v0) is ample and (u0�v0) ∩ (r(u0)�r(v0)) = ∅, (u0, v0) is a clashing pair for C ∩ B(u0, v0) and 
the restriction rB of r to supp(B(u0, v0)). By Lemma 6.9, rB is the out-map of a USO of C ∩ B(u0, v0). Consequently, by 
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minimality of C , C = C ∩ B(u0, v0) and thus dom(C) = supp(B(u0, v0)) = u0�v0. Moreover, if r(u0) �= r(v0), then there is 
x ∈ r(u0)�r(v0) and x ∈ supp(B(u0, v0)) = u0�v0, contradicting that (u0, v0) is a clashing pair.

Suppose r(u0) �=∅ and pick x ∈ r(u0) = r(v0). Consider the x-out-map rx : C x → 2U\{x} . By Lemma 6.9, rx is the out-map 
of a USO for C x . Suppose without loss of generality that x ∈ v0 \u0. Let u′

0 = u0 and v ′
0 = v0 \ {x}. Then rx(u′

0) = r(u0) \ {x} =
r(v0) \ {x} = rx(v ′

0), and consequently (u′
0, v

′
0) is a clashing pair for rx on C x . Since C x is ample, smaller than C , and since 

rx is the out-map of a USO of C x , this contradicts the minimality of C . �
Claim 6.11. C is a cube minus a vertex.

Proof. By (C2) and Claim 6.10, C is not a cube. If C is not a cube minus a vertex, since the complement C∗ = 2U \ C
is also ample (thus G(C∗) is connected), G(C∗) contains an x-edge w w ′ with x /∈ w and x ∈ w ′ . Consider the x-in-map 
rx : Cx �→ 2U\{x} .

For any u′ ∈ Cx , let u ∈ {u′, u′ ∪ {x}} such that rx(u′) = r(u). Since C satisfies (C1), u belongs to an r(u)-cube in C and 
consequently, u′ belongs to an rx(u′)-cube in Cx . Thus Cx and rx satisfy (C1).

Suppose that Cx and rx violate (C2). Then there exists a cube B ′ of Cx and u′, v ′ ∈ B ′ such that (u′�v ′) ∩(rx(u′)�rx(v ′)) =
∅. Without loss of generality, we can assume that B ′ = B(u′, v ′). Let u ∈ {u′, u′ ∪ {x}} such that r(u) = rx(u′) and let v ∈
{v ′, v ′ ∪ {x}} such that r(v) = rx(v ′). The restriction C ′

x of the ample class C ′ := C ∩ B(u, v) is the cube B ′ . By Lemma 6.9, 
rB(u,v) is the out-map of an USO of C ′ . Since w, w ′ /∈ C and w w ′ is an x-edge, w /∈ C ′

x . Thus there exists y ∈ supp(C) such 
that C ′ and the edge w w ′ of C∗ belong to different y-half-spaces C− = {c ∈ C : y /∈ c} and C+ = {c ∈ C : y ∈ c} of the cube 
2U . Since y ∈ supp(C), the half-space containing w w ′ also contains a concept of C . Hence, C ′ is a proper ample subset of 
C . Since u ⊆ u′ ∪ {x}, v ⊆ v ′ ∪ {x}, x /∈ r(u) = rx(u′), x /∈ r(v) = rx(v ′), we deduce that u ∩ (r(u)�r(v)) = u′ ∩ (rx(u′)�rx(v ′))
and v ′ ∩ (rx(u′)�rx(v ′)) = v ∩ (r(u)�r(v)). Since (u′�v ′) ∩ (rx(u′)�rx(v ′)) = ∅, (u, v) is a clashing pair for the restriction 
of r on C ′ , contrary to the minimality of C . Consequently, Cx and rx satisfy (C2) and rx is the outmap of an USO of Cx . By 
minimality of C , rx is a representation map for Cx .

Consider a clashing pair (u0, v0) for C and r, and let u′
0 = u0 \ {x} and v ′

0 = v0 \ {x}. By Claim 6.10, rx(u′
0) = r(u0) =

r(v0) = rx(v ′
0) = ∅. Since rx is a representation map for Cx , necessarily u′

0 = v ′
0. Consequently, u0�v0 = {x}, i.e., u0 v0 is an 

x-edge of G(C). This is impossible since C satisfies (C2). Therefore, C is necessarily a cube minus a vertex. �
Now, we complete the proof of the implication (2) ⇒ (1). By Claim 6.10, r(u0) = r(v0) = ∅. By condition (C1) and 

Claim 6.11, r(c) �= U for any c ∈ C . Thus there exists a set s ∈ X(C) = 2U \ {U , ∅} such that s �= r(c) for any c ∈ C . Every 
s-cube B of C contains a source p(B) for orB (i.e., s ⊆ r(p(B))). For each s-cube B of C , let t(B) = r(p(B)) \ s. Notice that 
∅ � t(B) � U \ s since s � r(p(B)) � U . Consequently, the number of distinct sets t(B) (when B runs over the s-cubes of C ) 
is at most 2|U |−|s| − 2. On the other hand, since C is a cube minus one vertex by Claim 6.11, there are 2|U |−|s| − 1 s-cubes 
in C . Consequently, there exist two s-cubes B, B ′ such that t(B) = t(B ′). Thus ∅ � s � r(p(B)) = r(p(B ′)) and (p(B), p(B ′))
is a clashing pair for C and r, contradicting Claim 6.10.

The implication (2) ⇒ (3) is trivial. To prove (3) ⇒ (2), we show by induction on |U | that a map r : C → X(C) satisfying 
(C2) also satisfies (C1). For any x ∈ U , consider the x-out-map rx . Recall that if cc′ is an x-edge directed from c to c′ , then 
x ∈ r(c) and rx maps cx = (c′)x ∈ C x to r(c) \ {x} ∈ X(C x). Thus rx maps C x to X(C x). Moreover, each cube Bx of C x is 
contained in a unique cube B of C such that supp(B) = supp(Bx) ∪ {x}. If there exist cx

1, c
x
2 ∈ Bx such that rx(cx

1) = r(cx
2), 

then there exist c1, c2 ∈ B such that r(c1) = rx(cx
1) ∪ {x} = rx(cx

2) ∪ {x} = r(c2), contradicting (C2). Consequently, orx satisfies 
(C2). By induction hypothesis, orx satisfies (C1) for any x ∈ U .

For any concept c ∈ C , pick x ∈ r(c). Since rx satisfies (C1), cx belongs to a σ ′-cube in C x with σ ′ = rx(cx) = r(c) \ {x}. 
This implies that c belongs to a σ -cube in C with σ = σ ′ ∪ {x} = r(c). Thus or satisfies (C1), concluding the proof of 
Theorem 6.8. �

A consequence of Theorems 6.1 and 6.8 is that corner peelings correspond exactly to acyclic unique sink orientations.

Proposition 6.12. An ample class C admits a corner peeling if and only if there exists an acyclic orientation o of the edges of G(C) that 
is a unique sink orientation.

Proof. Suppose that C< = (c1, . . . , cm) is a corner peeling and consider the orientation o of G(C) where an edge cic j
is oriented from ci to c j if and only if i > j. Clearly, this orientation is acyclic. For any i, since ci is a corner in Ci =
{c1, . . . , ci}, the outgoing neighbors of ci belong to a cube of Ci , i.e., o satisfies (C1). For any cube B of C , assume that 
ciB is the first concept of B in the ordering C< . Observe that ciB is a sink of B for the orientation o. Note that for each 
i > iB , ∅ � Ci−1 ∩ B ⊆ Ci ∩ B . By Theorem 3.1(6), Ci ∩ B is ample and thus connected. Consequently, for each i > iB , 
there exists cic j in G(C) with iB ≤ j < i such that c j ∈ B . Consequently, since cic j is oriented from ci to c j , ci is not a 
sink of B . Therefore every cube B has a unique sink for the orientation o and o is an acyclic unique sink orientation of 
G(C).

Suppose now that G(C) admits an acyclic unique sink orientation o. Consider a concept c that is a source for o. By 
(C1) all the neighbors of c belong to a cube of C and consequently, c is a corner of C . Since C is ample, by Lemma 4.1, 
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C ′ = C \ {c} is ample. Clearly the restriction o′ of the orientation o to C ′ is acyclic. We claim that o′ is also a USO for C ′ . 
Observe that any cube B of C ′ is also a cube of C and consequently, o′ satisfies (C2) since o satisfies (C2). Suppose now that 
there exists c′ ∈ C ′ such that the outgoing neighbors of c′ in C ′ do not belong to a cube of C ′ . Then since o is a USO for C , 
necessarily the outgoing neighbors of c′ in C belong to a cube B of C that contains c. But then c and c′ are both sources 
of B for the orientation o. By Lemma 6.4, this implies that o does not satisfy (C2) on B and thus on C (see Remark 6.6), 
a contradiction. Therefore, o′ satisfies (C1) and (C2) and is a unique sink orientation of C ′ . Applying the previous argument 
inductively we obtain a corner peeling of C . �
Remark 6.13. A consequence of Proposition 6.12 is that for any representation map for Hall’s concept class C H , the corre-
sponding USO of G(C H ) contains a directed cycle and thus at least one non-trivial strongly connected component.

The USOs corresponding to the two representation maps of C H presented in the appendix contain one or two non-trivial 
strongly connected components.

6.3. Representation maps for substructures

In this subsection, from a representation map r for an ample class C , we show how to derive representation maps for 
restrictions CY , reductions C Y and intersections C ∩ B with cubes of 2U .

Given a subset Y ⊆ U = dom(C), define rY : C Y → X(C Y ) as follow. For any c ∈ C Y , there exists a unique Y -cube B in C
such that tag(B) = c. By Lemmas 6.4 and 6.9(1), there exists a unique cB ∈ B such that rB(cB) = r(cB) ∩ Y = Y (cB is the 
source of B for or ). We set rY (c) := r(cB) \ Y . If Y = {x}, rY coincides with the x-out-map rx defined in Section 6.2.

Given a subset Y ⊆ U = dom(C), define rY : CY → X(CY ) as follow. For any c ∈ CY , there exists a unique Y -cube B in 2U

such that tag(B) = c. Since c ∈ CY , C ∩ B �=∅. By Claim 6.2, there exists a unique cB ∈ C ∩ B such that rB(cB) = r(cB) ∩ Y = ∅

(cB is the unique sink of C ∩ B for or ). We set rY (c) := r(cB). If Y = {x}, rY coincides with the x-in-map rx defined in 
Section 6.2.

Proposition 6.14. For a representation map r for an ample class C , any cube B of 2U , and any Y ⊆ U , the following hold:

(1) rB is a representation map for C ∩ B;
(2) rY is a representation map for C Y ;
(3) rY is a representation map for CY .

Proof. By Theorem 6.8, Assertion (1) follows from Assertion (1) of Lemma 6.9 and Assertion (2) follows by iteratively 
applying Assertion (2) of Lemma 6.9 to the elements of Y .

By Theorem 6.8, to prove Assertion (3), it is enough to show that rY is the out-map of a USO of CY . Recall that for 
any c ∈ CY , we have rY (c) = r(cB), where B is the unique Y -cube of 2U such that tag(B) = c and cB is the unique sink of 
C ∩ B for or . By (C1), there exists an r(cB)-cube B ′ containing cB in C . Since r(cB) ∩ Y =∅, there exists an r(cB)-cube of CY
containing c. Consequently, CY and rY satisfy (C1).

Suppose there exists a cube B in CY violating (C2), i.e., there exist c1, c2 ∈ CY ∩ B such that rY (c1) ∩ supp(B) = rY (c2) ∩
supp(B). Any cube B in CY extends to a unique cube B ′ of 2U such that supp(B ′) = supp(B) ∪ Y . By definition of rY , 
there exist c′

1, c
′
2 ∈ B ′ such that r(c′

1) = rY (c1) and r(c′
2) = rY (c2). Consequently, r(c′

1) ∩ supp(B ′) = rY (c1) ∩ supp(B) since 
r(c′

1) ∩ Y = ∅ and similarly r(c′
2) ∩ supp(B ′) = rY (c2) ∩ supp(B). Consequently, the map c �→ r(c) ∩ supp(B ′) is not injective 

on C ∩ B ′ , contradicting Condition (R3) of Theorem 6.1. �
6.4. Pre-representation maps

We now show that we can find maps satisfying each of the conditions (C1) and (C2). Nevertheless, we were not able to 
find a map satisfying (C1) and (C2). It is surprising that, while each d-cube has at least d�(2d) USOs [27], it is so difficult to 
find a single USO for ample classes.

Proposition 6.15. For any ample class C there exists a bijection r′ : C → X(C) and an injection r′′ : C → 2U such that r′ satisfies the 
condition (C1) and r′′ satisfies the condition (C2).

Proof. First we prove the existence of the bijection r′ . For s ∈ X(C), denote by Ns(C) the union of all s-cubes included in C
and call Ns(C) the carrier of s. For S ⊆ X(C), denote by N S (C) the union of all carriers Ns(C), s ∈ S . Define a bipartite graph 
�(C) = (C ·∪ X(C), E), where there is an edge between a concept c ∈ C and a strongly shattered set s ∈ X(C) if and only if 
c belongs to the carrier Ns(C). We assert that �(C) admits a perfect matching M . By the definition of the edges of �(C), if 
the edge cs is in M , then c belongs to Ns(C) and thus the unique s-cube containing c is included in C . Thus r′ : C → X(C)

defined by setting r′(c) = s if and only if cs ∈ M is a bijection satisfying (C1).
Since C is ample, we have |X(C)| = |C |, and thus to prove the existence of M , we show that the graph � satisfies the 

conditions of Philip Hall’s theorem [26]: if S is an arbitrary subset of simplices of X(C), then |N S (C)| ≥ |S|. Indeed, since C
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is ample, for any s ∈ S the carrier Ns(C) contains at least one s-cube, thus S ⊆ X(N S(C)). Consequently, |S| ≤ |X(N S (C))| ≤
|N S(C)| by the Sandwich Lemma applied to the class N S (C).

We now prove that there exists an injection r′′ : C → 2U satisfying (C2). We prove the existence of r′′ by induction on the 
size of U . If |U | = 0, r′′ trivially exists. Consider now x ∈ X and note that there exists an injection r′′

x : Cx → 2U\{x} satisfying 
(C2) by induction hypothesis. We define r′′ by:

r′′(c) =

⎧⎪⎨
⎪⎩

r′′
x (c) if x /∈ c,

r′′
x (c \ {x}) if x ∈ c and c \ {x} /∈ C,

r′′
x (c \ {x}) ∪ {x} otherwise.

It means that the orientation of the edges of G(C) is obtained by keeping the orientation of the edges of G(Cx) and orienting 
all x-edges of G(C) from c ∪ {x} to c. It is easy to verify that r′′ is injective.

Consider two distinct concepts c, c′ ∈ C belonging to a common cube of C and let B = B(c, c′) that is the minimal cube 
of C containing c and c′ . If c�c′ �= {x}, then since r′′(c) \ {x} = r′′

x (c \ {x}), since r′′(c′) \ {x} = r′′
x (c′ \ {x}), and since r′′

x satisfies 
(C2) on the cube Bx of Cx , there exists y ∈ (c \ {x} ∪ c′ \ {x})�(r′′

x (c \ {x}) ∪ r′′
x (c′ \ {x})) ⊆ (c ∪ c′)�(r′′(c) ∪ r′′(c′)). Suppose 

now that c′ = c ∪ {x}. In this case, x ∈ r′′(c′) \ r′′
x (c) and x ∈ (c�c′) ∩ (r′′(c)�r′′(c′)). �

One can try to find representation maps for ample classes by extending the approach for maximum classes: given ample 
classes C and D with D ⊂ C , a representation map r for C is called D-entering if all edges cd with c ∈ C \ D and d ∈ D are 
directed by or from c to d. The representation map defined in Proposition 5.2 is D-entering. Given x ∈ dom(C), suppose that 
rx is a C x-entering representation map for Cx .

We can extend the orientation orx to an orientation o of G(C) as follows. Each x-edge cc′ of G(C) is directed arbitrarily, 
while each other edge cc′ is directed as the edge cxc′

x is directed by orx . Since orx satisfies (C1), (C2) and rx is C x-entering, o
also satisfies (C1), (C2), thus the map ro is a representation map for C . So, ample classes would admit representation maps, 
if for any ample classes D ⊆ C , any representation map r′ of D extends to a D-entering representation map r of C.

6.5. Representation maps as ISRs

Our next result formulates the construction of representation maps for ample classes as an instance of the Independent 
System of Representatives problem. A system (G, (V i)1≤i≤n) consisting of a graph G and a partition V 1, . . . , Vn of its vertex 
set V (G) is called an ISR-system. An independent set in G of the form {v1, . . . , vn}, where vi ∈ V i for each 1 ≤ i ≤ n, is 
called an Independent System of Representatives, or ISR for short [2].

Consider an ample class C ⊆ 2U . We build an ISR-system (G, (V c)c∈C ) as follows. For each concept c and each set Y ⊆
X(C) such that c belongs to a Y -cube of C , there is a vertex (c, Y ) in V (G). For each concept c ∈ C , set V c := {(c, Y ) ∈ V (G)}. 
Finally, E(G) is defined as follows: there is an edge between two vertices (c1, Y1), (c2, Y2) in G if c1, c2 are distinct vertices 
belonging to a common cube B such that Y1 ∩ supp(B) = Y2 ∩ supp(B).

Proposition 6.16. There is an ISR for (G, (V c)c∈C ) if and only if C admits a representation map.

Proof. Assume first that r is a representation map for C . We show that {(c, r(c))}c∈C is an ISR for (G, (V c)c∈C ). By (C1), for 
every c ∈ C , c belongs to an r(c)-cube of C and thus (c, r(c)) ∈ V (G). Moreover, if {(c, r(c))}c∈C is not an independent set of 
G , there exist two concepts c1, c2 in a cube B such that r(c1) ∩ supp(B) = r(c2) ∩ supp(B), contradicting (C2).

Conversely, if {(c, Yc)}c∈C is an ISR for (G, (V c)c∈C ), then the map r : c → X(C) defined by r(c) = Yc is a representation 
map. Indeed, (C1) is satisfied by the definition of the vertices of V (G), (C2) is satisfied by the definition of the edges of 
E(G) and since {(c, Yc)}c∈C is an independent set of G . �
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Appendix A. Two representation maps for Hall’s concept class C H

We give two representation maps for Hall’s concept class C H given in Fig. 3. The representation map r1 presented in 
Table 1 was found by constructing Boolean clauses for a matching between the concepts and the dimension sets of size ≤ 3
that satisfies the non-clashing condition. A satisfying assignment was then found with the open source MiniSat solver. The 
representation map r2 presented in Table 2 was found by following the steps of the proof of Theorem 5.1 by recursing on 
dimensions 12, 11, . . . In both cases, the representation map ri , i = 1, 2 of C H is described as follows: we list all the 299 
concepts as bit vectors and for each concept c ∈ C H , we underline the bits of ri(c) (a subset of size ≤ 3 from {1, 2, . . . , 12}).

The USOs corresponding to these two representation maps are given in Figs. 6 and 7; they were obtained by using Sage
and Graphviz. In both cases, the non-trivial strongly connected components are represented by the blue boxes. Except from 
the arcs within these strongly connected components, the other arcs are downward arcs.

Table 1
The representation r1 map for C H obtained using MiniSat.

000000000000 000000000001 000000000010 000000000011 000000010000 000000010001 000000010011
000000110000 000000110001 000000110011 000000110111 000000111011 000000111111 000001000000
000001000001 000001000011 000001010000 000001010001 000001010011 000001110000 000001110001
000001110011 000001110111 000001111011 000001111111 000010000011 000010010011 000010110011
000010111011 000010111111 000011000000 000011000001 000011000011 000011010000 000011010001
000011010011 000011110000 000011110001 000011110011 000011110100 000011110101 000011110111
000011111011 000011111100 000011111101 000011111111 000100000000 000100010000 000100110000
000100110001 000100110011 000100110111 000100111111 000101110000 000101110001 000101110011
000101110111 000101111111 000110111111 000111110000 000111110001 000111110011 000111110100
000111110101 000111110111 000111111100 000111111101 000111111111 001000110011 001000110111
001000111011 001000111111 001010111111 001011111111 001100000000 001100000100 001100001000
001100001100 001100010000 001100010100 001100011100 001100100000 001100100100 001100101000
001100101100 001100110000 001100110001 001100110011 001100110100 001100110101 001100110111
001100111000 001100111001 001100111011 001100111100 001100111101 001100111111 001101110000
001101110001 001101110011 001101110100 001101110101 001101110111 001101111100 001101111101
001101111111 001110111111 001111110000 001111110001 001111110011 001111110100 001111110101
001111110111 001111111100 001111111101 001111111111 010000000000 010000000001 010000000010
010000000011 010000010000 010000110000 010001000000 010001000001 010001000011 010001010000
010001110000 010011000000 010011000001 010011000011 010011010000 010011010001 010011010011
010011110000 010011110001 010011110011 010011110100 010011110101 010011110111 010011111100
010011111101 010011111111 010100000000 010100010000 010100110000 010101110000 010111110000
010111110100 010111111100 010111111101 010111111111 011011111111 011100000000 011100000100
011100001000 011100001100 011100010000 011100010100 011100011100 011100110000 011100110100
011100111100 011101110000 011101110100 011101111100 011111110000 011111110100 011111111100
011111111101 011111111111 100000000000 100000000010 100000000011 100001000011 100010000011
100011000011 100100000000 101100000000 101100001000 101100001100 101100011100 101100101100
101100111100 110000000000 110000000001 110000000010 110000000011 110000010000 110000110000
110001000000 110001000001 110001000011 110001010000 110001110000 110010000000 110010000001
110010000010 110010000011 110011000000 110011000001 110011000010 110011000011 110011000100
110011000101 110011000110 110011000111 110011001100 110011001101 110011001110 110011001111
110011010000 110011010001 110011010011 110011010100 110011010101 110011010111 110011011100
110011011101 110011011111 110011101111 110011110000 110011110001 110011110011 110011110100
110011110101 110011110111 110011111100 110011111101 110011111111 110100000000 110100010000
110100110000 110101000000 110101010000 110101110000 110111000000 110111000100 110111001100
110111001101 110111001111 110111010000 110111010100 110111011100 110111011101 110111011111
110111101111 110111110000 110111110100 110111111100 110111111101 110111111111 111011001100
111011001101 111011001110 111011001111 111011101111 111011111111 111100000000 111100000100
111100001000 111100001100 111100010000 111100010100 111100011100 111100101100 111100110000
111100110100 111100111100 111101000000 111101000100 111101001100 111101010000 111101010100
111101011100 111101101100 111101110000 111101110100 111101111100 111111000000 111111000100
111111001100 111111001101 111111001110 111111001111 111111010000 111111010100 111111011100
111111011101 111111011110 111111011111 111111101100 111111101110 111111101111 111111110000
111111110100 111111111100 111111111101 111111111110 111111111111
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Fig. 6. The USO corresponding to the representation map r1 of C H described in Table 1. The 12-vertex NSCC is in the blue box. Best viewed by zooming in.

The USO from Fig. 6 has a unique non-trivial strongly connected component (NSCC) K while the one from Fig. 7 has two 
such components K ′ and K ′′ . Since those components are small (each of them contains 12 concepts), these USOs are not 
“far” from being acyclic and C H is (not “far” from being) a minimal corner-free example.

Given a concept class C and an orientation o of the edges of G(C), we denote by 
−→
Go(C) the resulting directed graph. 

From the following proposition, we deduce that any representation map for C H obtained by the algorithm of Theorem 5.1
contains at least two NSCCs. In particular, this shows that the representation map r1 cannot be obtained in such a way.

Proposition A.1. For any maximum class C without corners, any representation map r of C computed by Theorem 5.1, and the USO o
corresponding to r, the directed graph 

−→
G o(C) contains at least two non-trivial strongly connected components.

Proof. We prove the result by induction on the dimension of C . If C is of dimension at most 2, then by Proposition 4.11 C
contains a corner and we are done.

Now suppose that the dimension of C is at least 3. Recall that the first step is to contract C along one of the coordinates 
x ∈ U (to construct r2, we contracted C H along coordinate 12, see Fig. 8) and to compute recursively a USO ox (and the 
corresponding representation map rx) of C x . Then we extend ox to a USO ox (and find the corresponding representation 
map rx) of Cx . Finally, we obtain o from ox by keeping the orientation of all edges that do not correspond to coordinate x
and by orienting all x-edges from 1C x to 0C x .
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Fig. 7. The USO corresponding to the representation map r2 of C H described in Table 2. This map has two NSCCs of size 12 (in blue).

Fig. 8. Another representation of the USO corresponding to r2 illustrating the top recursion (on dimension 12) of the algorithm from Theorem 5.1: 0C x and 
1C x are represented by yellow boxes.
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Table 2
The representation map r2 for C H obtained using Theorem 5.1 by recursing on dimensions 12, 11, . . ..

000000000000 000000000001 000000000010 000000000011 000000010000 000000010001 000000010011
000000110000 000000110001 000000110011 000000110111 000000111011 000000111111 000001000000
000001000001 000001000011 000001010000 000001010001 000001010011 000001110000 000001110001
000001110011 000001110111 000001111011 000001111111 000010000011 000010010011 000010110011
000010111011 000010111111 000011000000 000011000001 000011000011 000011010000 000011010001
000011010011 000011110000 000011110001 000011110011 000011110100 000011110101 000011110111
000011111011 000011111100 000011111101 000011111111 000100000000 000100010000 000100110000
000100110001 000100110011 000100110111 000100111111 000101110000 000101110001 000101110011
000101110111 000101111111 000110111111 000111110000 000111110001 000111110011 000111110100
000111110101 000111110111 000111111100 000111111101 000111111111 001000110011 001000110111
001000111011 001000111111 001010111111 001011111111 001100000000 001100000100 001100001000
001100001100 001100010000 001100010100 001100011100 001100100000 001100100100 001100101000
001100101100 001100110000 001100110001 001100110011 001100110100 001100110101 001100110111
001100111000 001100111001 001100111011 001100111100 001100111101 001100111111 001101110000
001101110001 001101110011 001101110100 001101110101 001101110111 001101111100 001101111101
001101111111 001110111111 001111110000 001111110001 001111110011 001111110100 001111110101
001111110111 001111111100 001111111101 001111111111 010000000000 010000000001 010000000010
010000000011 010000010000 010000110000 010001000000 010001000001 010001000011 010001010000
010001110000 010011000000 010011000001 010011000011 010011010000 010011010001 010011010011
010011110000 010011110001 010011110011 010011110100 010011110101 010011110111 010011111100
010011111101 010011111111 010100000000 010100010000 010100110000 010101110000 010111110000
010111110100 010111111100 010111111101 010111111111 011011111111 011100000000 011100000100
011100001000 011100001100 011100010000 011100010100 011100011100 011100110000 011100110100
011100111100 011101110000 011101110100 011101111100 011111110000 011111110100 011111111100
011111111101 011111111111 100000000000 100000000010 100000000011 100001000011 100010000011
100011000011 100100000000 101100000000 101100001000 101100001100 101100011100 101100101100
101100111100 110000000000 110000000001 110000000010 110000000011 110000010000 110000110000
110001000000 110001000001 110001000011 110001010000 110001110000 110010000000 110010000001
110010000010 110010000011 110011000000 110011000001 110011000010 110011000011 110011000100
110011000101 110011000110 110011000111 110011001100 110011001101 110011001110 110011001111
110011010000 110011010001 110011010011 110011010100 110011010101 110011010111 110011011100
110011011101 110011011111 110011101111 110011110000 110011110001 110011110011 110011110100
110011110101 110011110111 110011111100 110011111101 110011111111 110100000000 110100010000
110100110000 110101000000 110101010000 110101110000 110111000000 110111000100 110111001100
110111001101 110111001111 110111010000 110111010100 110111011100 110111011101 110111011111
110111101111 110111110000 110111110100 110111111100 110111111101 110111111111 111011001100
111011001101 111011001110 111011001111 111011101111 111011111111 111100000000 111100000100
111100001000 111100001100 111100010000 111100010100 111100011100 111100101100 111100110000
111100110100 111100111100 111101000000 111101000100 111101001100 111101010000

Observe that any directed cycle of 
−→
Go(C) corresponds either to a cycle of C x or to a directed cycle of a connected 

component of G(Cx \ C x). If C x does not contain a corner, then by induction hypothesis, C x contains at least two NSCCs and 
thus there are two NSCCs in 0C x and thus in C and we are done.

Suppose now that C x contains a corner. Consider a connected component A of G(Cx \ C x). If A does not contain any 
directed cycle, then the concept class A is acyclic and it contains a source s. By (C1) applied to s and r, we conclude that s
is a corner of C . Consequently, each connected component of G(Cx \ C x) contains at least one NSCC.

If C x is not a separator of G(Cx), i.e., if Nx(C) is not a separator of G(C), then without loss of generality, we can assume 
that there is no edge from 0C x to C \ Nx(C). Consider any corner c of C x that is contained in a unique maximal cube Bx of 
C x . In C there exists a unique cube B containing c such that supp(B) = supp(Bx) ∪ {x}. Since c has no neighbor outside the 
carrier Nx(C), B is the unique maximal cube containing c and thus c is a corner of C , a contradiction.

We can thus assume that C x is a separator of G(Cx) and thus G(Cx \ C x) contains at least two connected components, 
and by the previous assertion, each of them contains at least one NSCC and we are done. �

A strongly connected component (SCC) S of a directed graph 
−→
G is called a source-component if there is no arc from u to 

v with v ∈ S and u /∈ S .
In the directed graph 

−→
Go corresponding to a representation map r of an ample class C , if a source-component S is 

reduced to a single concept c (i.e., S is trivial), then c is a corner of C . Thus, one can view the source-components of 
−→
Go

as a generalization of corners. However, the definition of source-components depends on a given representation map r and 
the corresponding orientation or of G(C), while the corners are defined in the undirected graph G(C). In the following 
proposition, we prove that, similarly to corners, removing a source component S from an ample class C results into an 
ample class C \ S . Moreover, the restriction of the representation map r to C \ S is still a representation map.
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Proposition A.2. Let C be an ample class C , r be a representation map of C , o = or the USO defined by r, and 
−→
Go be the corresponding 

directed graph. Then for any source-component S of 
−→
Go, C \ S is an ample class and the restriction of r to C \ S is a representation map 

of C \ S.

Proof. Set C ′ := C \ S and denote by r′ the restriction of r to C ′ . Since r satisfies (C2) on C , r′ satisfies (C2) on C ′ . Now, 
we show that r′ satisfies (C1) on C ′ . Pick any concept c ∈ C ′ and let B be the cube of 2U containing c and defined by r(c). 
By (C1), B is included in C . If B is also included in C ′ , then we are done. So, suppose that B ∩ S �= ∅ and pick a concept 
c′ ∈ B ∩ S closest to c. Let B ′ = B(c, c′) be the cube spanned by c and c′ . Since B ′ ⊂ B , B ′ is a cube of C . By the definition 
of B , c is a source of B and thus of B ′ . On the other hand, from the choice of c′ all neighbors of c′ in B ′ belong to C \ S . 
Since c′ ∈ S and S is a source-component of 

−→
Go , all these edges have c′ as a source. Consequently, c′ is a second source of 

B ′ , contrary to condition (C2) applied to C . This shows that B is included in C ′ , establishing that r′ satisfies (C1) on C ′ .
Since r is a bijective map from C to X(C), from (C1) applied to r′ we conclude that r′ is an injective map from C ′ to 

X(C ′), yielding |C ′| ≤ |X(C ′)|. Since |X(C ′)| ≤ |C ′| by the sandwich lemma, we deduce that |C ′| = |X(C ′)| and thus C ′ is 
ample by Theorem 3.1(4). Since the out-map of r′ satisfies (C1) and (C2), r′ is a representation map of C ′ . �
Corollary A.3. C H \ K and C H \ (K ′ ∪ K ′′) are ample classes admitting corner peelings.

Proof. By Proposition A.2, the concept classes C H \ K and C H \ K ′ are ample classes and the restrictions of r to them are 
representation maps. Applying Proposition A.2 we conclude that C H \ (K ′ ∪ K ′′) is an ample class and the restriction of r to 
C H \ (K ′ ∪ K ′′) is a representation map. Moreover, since all other NSCCs of 

−→
G (C) are trivial, the orientations of the edges of 

graphs G(C \ K ) and C H \ (K ′ ∪ K ′′) defined by these representation maps are acyclic USOs. By Proposition 6.12, C H \ K and 
C H \ (K ′ ∪ K ′′) admit corner peelings. �
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