Reprinted from JOURNAL OF COMPUTER AND SYSTEM SCIENCES Vol. 33, No. 3, December 1986
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Membership for Growing Context-Sensitive
Grammars Is Polynomial*

ELIAS DAHLHAUS

Technische Universitiit Berlin, Fachbereich Mathematik, Strasse des 17. Juni 135,
1000 Berlin, West 12, Germany

AND
MANFRED K. WARMUTH

Department of Computer and Information Sciences, Applied Sciences Building,
University of California, Santa Cruz, California 95064

Received July 1, 1985; revised March 10, 1986

A context-sensitive grammar is a growing context-sensitive grammar, if the right-hand side
of every production is strictly longer than the left-hand side. We show that for any fixed grow-
ing context sensitive grammar, the membership problem for the corresponding language is
polynomial. © 1986 Academic Press, Inc.

1. INTRODUCTION

Context-sensitive grammars (csgs) are one of the classical grammar families of
formal language theory. They were introduced in [Ch59] and have been studied
extensively since then (see [Bo73, Ha78] for an overview). Context-sensitive gram-
mars are defined as rewriting systems, where the length of the right-hand side of
every production is at least as large as the length of the left-hand side. This restric-
tion on the productions is responsible for the fact that the question of membership
for context-sensitive languages (csls) is equivalent to the question of acceptance for
nondeterministic linear bounded automata [Ku64]. Therefore membership for csls
is PSPACE complete [Ka72] and this is true even for certain fixed grammars. In
this paper we show that if we restrict ourselves to “growing” productions, i.e., the
right-hand side of every production is strictly longer than the left-hand side, then
membership for fixed csls is polynomial.

This may appear surprising in view of the results obtained in [Bo78]. The grow-
ing csls are a subclass of LINEAR g as defined in [Gl64, Bo71]. Languages of

* This research was done while the authors were visiting the Hebrew University of Jerusalem. The first
author was supported by the Minerva Foundation and the second author by the United States—Israel
Binational Foundation Grant 2439-82. A preliminary version of this appeared in the CAAP 86
Proceedings [DW86]. :

456

0022-0000/86 $3.00

Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

I

Bl |

GROWING CONTEXT-SENSITIVE GRAMMARS 457

LINEAR are given by an arbitrary csg which has the property that every word w
in the language has a derivation of length at most ¢ |w|,' for some overall constant
¢, which only depends on the grammar. In [Bo78] it was shown that there are NP-
complete languages in LINEAR . Thus our result that the family of growing csls
is in P deserves an explanation.

Observe that in LINEAR ¢ “complex derivations” are allowed using nongrowing
productions; then the final word may be padded such that the length of the overall
derivation is linear in the length of the final word. In fact, for every language in P
there is a polynomially padded version of this language which is in
LINEAR s [Bo78]. »

An arbitrary csg may be converted into a growing csg by adding a dummy sym-
bol to the right-hand side of every nongrowing production. The grammar needs to
be changed slightly so that the dummy symbols are “ignored.” But now padding
increases the length of the word exponentially. Each time a “signal” runs from one
end of a sentential form to the other, the length increases by a constant factor.

Note that the question of emptiness for csls is undecidable [BPS61]. By padding
a csg with dummy symbols a related growing csg is constructed. Clearly, emptiness
for the corresponding growing csls is also undecidable. For the question of
emptiness, the “exponential padding” is redundant.

The paper is outlined as follows. In Section 2 the basic notations are developed.
Given a word w, we want to decide membership for a language defined by some
fixed growing csg. A planar directed acyclic graph is associated with every
derivation of the grammar. In Section 3 we show that if all productions are growing
then there is a path of length O(log(|w|) from each vertex to some sink (not
necessarily the same sink) in the graph. The sinks of the graph are labeled with the
word w to be tested for membership. These short paths are then used in Section 4 in
a polynomial cut-and-paste algorithm for deciding membership for a growing csl.

In the cut-and-paste algorithm each “piece” of a derivation graph is characterized
by a tuple (called a frame) which contains all the essential information about the
piece. Because of the short paths there is only a polynomial number of different
frames which need to be considered. Frames were used extensively in [GS85,
GW85, GW86a] for studying polynomial cases of k-parallel rewriting.

In Section 5 the polynomiality of the membership problem for fixed, growing csls
is contrasted with the fact that there are NP-complete languages defined by fixed,
growing scattered grammars. In scattered grammars (scgs) [GH68, GW86b] the
symbols to be rewritten in parallel are not required to be adjacent. In every produc-
tion each symbol on the left-hand side is rewritten into a string of length at least
one. In growing scgs each symbol must be rewritten into a string of length strictly
bigger than one. It is easy to see that in the derivation trees of growing scgs each
node has an O(log(|w|)) path to a leaf, where w is the word to be parsed. But since
for scattered grammars the rewritten symbols do not need to be adjacent, we can-
not cut and paste the derivation trees along the short paths.

! |w| denotes the length of w.

458 DAHLHAUS AND WARMUTH

The parallel complexity and the space complexity of the membership problem for
fixed growing csls is discussed in the conclusion section. The main open problem is
to determine the complexity of membership for “variable” growing csls, ie., not
only the word to be tested but also the growing csg is a variable of the input. The
question is whether this problem can be solved in polynomial time or whether it is
NP-complete.

2. PRELIMINARIES

A context-sensitive grammar (csg) G is a quadruple (V, X, P, S) where:

(i) Vis a finite set of symbols, X is the subset of ¥ which contains the ter-
minal symbols, and S is the startsymbol in V' — 2.

(i) P is a finite set of productions of the form a— f, st. o, fe¥* and
la| <|B|. For two words u and v in V*, u derives v, denoted u=>v, if there exist
X, y,0, feV* st u=xay, v=xpy and a« — e P. Let % denote the reflexive and
transitive closure of =. Using this notation we are ready to describe the context-
sensitive language (csl) defined by the csg G: L(G)={w | S % w and we Z*}.

Now the membership problem for a csl L(G) is defined as follows:

Input: a word w e 2*; where X is the terminal alphabet of G;
Question: is we L(G)?

Note that G is fixed, i.., it is not a variable of the input. There are fixed csgs for
which this problem is PSPACE complete [Ku64, Ka72].

We restrict ourselves to a subclass of csgs for which the membership problem is
in P (Sect.4). A csg G is growing if for all productions o — f of the grammar,
o] < Bl :

Following [Lo70] each derivation is associated with a planar directed. acyclic
graph called a (derivation) graph. The vertices in such a graph will be labeled with
the corresponding symbols and productions used in the derivation. Let w(x) denote
the label of vertex x, where o is a function from the set of vertices of the derivation
graph to ¥ U P. Vertices labeled with symbols (resp. productions) are called symbol
(resp. production) vertices. We inductively define the derivation graph D, = (V,, E)
which is associated with the derivation o, =>a, = -+ =>0,:

Case k=1. Let a,=a,a, " a,, where a;e V. Then D= (V,, E;) has the ver-
tices V= {xy, X3,..., X, } s.t. (x;) =a, and no edges, ie., E, is empty.

Case k>1. Assume o,=a, - =a,_, corresponds to the graph D, ,=
(Vi_1, Ex ;) and a; _; = uaw =>uPv=o,. From D, _, and the production o — f the
graph D, is constructed for a; = o, => -+ =o,. For the word f=5b,b,""* b, create
the vertices V= {y,| 1<i<q} and for the production « — f create an additional
vertex y. Choose the vertices s.t. ¥, _,, ¥z and {y} are distinct. The vertices of V

GROWING CONTEXT-SENSITIVE GRAMMARS 459

are labeled with the symbols of B, ie., w(y;)=b,, and y is labeled with the produc-
tion o — f. Let V, be the sinks (symbol vertices) of D, _, corresponding to o. Now
Vi=Vi_yOVgu{ytand Ex=E,_ 0V, x{y}u{y}xV,

An example is given in Fig. 1. The planarity of the derivation graphs follows from
the fact that only sinks are connected to the new production vertex. The sources of
the graph D, correspond to a; and the sinks to o,. We say that D, derives o,. Since
the graph is planar there is a natural left to right order amongst the sources: let
ay=a,a, - a,, then for 1 <i<j<p the vertex corresponding to q; is to the left of
the vertex of a; and the vertex of g, is to the right of a;,. Similarly, there is a natural
left to right order amongst the sinks of a derivation graph, and amongst the
predecessors and successor of every production vertex. Two sources (sinks) are
called adjacent if they are adjacent in the left to right order of the sources (sinks).

In a derivation graph D a path © is defined to be a sequence x,, x,,.., x,,, of
vertices of D. The paths 7 starts at x,, finishes x,, ; and has length e. Note that a
path which contains one vertex has length zero. In this paper we assume that non-
empty paths always end at a sink of D. The distance d,(y) of y from x is the length
of the shortest paths which start at x and finish at y. Note that d (x)=0.

In the following lemma we will to show that there exists a shortest paths from
each vertex to some sink s.t. no pair of paths is “crossing.” To construct such a set
of paths we use the following definition of consistency. Two paths are consistent if
they have no common vertices, or if starting from the first common vertex the paths
are identical. A set of paths is consistent if each pair is. Note that since derivation
graphs are planar two consistent paths cannot “cross.”

LEMMA 1. For any derivation graph there exists a set of shortest paths from all
vertices to sinks such that this set of paths is consistent.

Proof. Let v, for 1 <i<m, be the vertices of a derivation graph D and let 7, be
a shortest path starting at v; (and finishing at a sink of D). We now inductively con-
struct paths =] (for 1 <i<m), where 7] starts at v,, s.t. {n] | 1<j<i} is a consistent
set of shortest paths.

FiG. 1. The derivation graph corresponding to the derivation 4BC = QRSC = QTuvw = xyzuvw
(the rewritten symbols are underlined).

[TERCIN

460 DAHLHAUS AND WARMUTH

Assume the set {n] | 1<j<m<m}=II"is consistent. If 7, , is consistent with
IT' we set), , =7, and there is nothing to show. Otherwise, let x be the first
common vertex of #; , ; with some path n’ of IT'. Since both n’ and =, , are shor-
test paths, the suffixes of n' and =, ; which start with x have the same length. Let
7z + 1 be the path which agrees with 7, , ; up until x and then follows 7’ to the sink.
Clearly, nj;,, has the same length as 7, and is consistent with /7'. This com-
pletes the description of the inductive construction. ||

3. SHORT PATHS IN DERIVATION GRAPHS

Consider derivation graphs for a growing csg which derive a word w. In this sec-
tion we show that in such graphs there is a path of length O(log(|w|)) from each
vertex to a sink. We prove this by assigning weights to the vertices, s.t. big weights
will correspond to short paths.

Let us first discuss why short paths do not always exist for derivation graphs of
grammars which define languages in LINEARg. In [GIl64] it was shown that
L= {ucu®cu:ue {a,b}*} is not LINEARs.? Since growing csls are a subclass of
LINEARg [Bo73] the language L is not a growing csl. Intuitively, only
O(log(|w|)) bits can be transmitted across paths of length O(log(|w|)). But in
L, O(]w|) bits need to be transmitted to synchronize the production of the words
u, u® and u in w = ucu®cu.

It is crucial that in the definition of L the word u is over a two symbol alphabet.
Just producing three blocks of equal size as in the language L' = {a"b"c":n>1} is
much easier. One can show that L’ is a growing csl. In L’ only O(log(|w|)) bits need
to be transmitted. It is easy to see that L= {a*"h*'¢*:n>0} is a growing csl. We
let a special symbol scan the word. During each complete scan the number of sym-
bols a, b, and c is doubled. From this it is easy to see that L’ is also a growing csl.
To produce the word a"b”"c”, | log n | scans are used. Each scan corresponds to a bit
in the bit representation of n. Again we double the number of symbols in each scan,
but we also add an additional symbol if the corresponding bit is one.

We mentioned already in the introduction that for every language in P there
is a padded version [Bo71] which is in LINEARs. Thus even though
{ucuBcuzue {a,b}*} is not in LINEAR(s, the language {ucuRcud ™
ue {a, b}*}is.

We proceed to prove the existence of short paths in derivation graphs of a grow-
ing csg. Let D be such a derivation graph deriving the word w. Each vertex x of D
is associated with a subgraph of D. Let D, be the subgraph induced by all vertices
reachable from x. «

The length of the paths will depend on the growth ratios of the productions in the
grammar. The growth ratio of a production o« — f is the ratio |f|/|a|. The minimum
growth ratio of all productions of a grammar is the growth ratio of the grammar.

2 The word u® denotes the reverse of the word u.

sl |

GROWING CONTEXT-SENSITIVE GRAMMARS 461

Throughout the paper this minimum is denoted by g. Note that g> 1 for growing
csgs. -

The growth ratio of a production vertex is the ratio between the number of
immediate successors over the number of immediate predecessors. Thus g is a lower
bound on the growth ratios of the production vertices of D. Since each production
vertex of D, has at least as many immediate predecessors and the same number of
immediate successors in D as in D, the growth ratios of the production vertices of
D, are also bounded by g.

We now assign weights ,(-) to the vertices of D, according to the following
scheme:

(i) t.x)=1
(i) For a production vertex p, the weight ¢ (p) is the sum of all the weights
of the immediate predecessors of p.

(ii) If p is a production vertex with k immediate successors, then each of
these receives a weight of ¢ (p)/k.

Note that 2 ;ukorp, 2.(s) = 1. Since D, has at most |w| sinks, there is a sink in
D, of weight at least 1/|w]|.
The following lemma shows that big weights correspond to short paths.

LEMMA 2. Let y be a symbol vertex of D, and let d be a non-negative integer. If
t(y)=>g “ then d (y)<2d.

Proof. We prove this by an induction on d. The base case of d=0 is trivial.
Assume the lemma holds for all &' <d and let y be a symbol vertex of D, s.t.
1>1,(y)=g~“ Let p be the production vertex which precedes y. Assume p has a
immediate predecessors and b immediate successors. Since.z (p)=b-1.(y), p must
have an immediate predecessor y’ with weight at least (b/a)(y). By the above
remarks 7.(y')>g"t.(y)>g'~“ Applying the inductive hypothesis it follows that
d(y)<2d—2and d (y)<2d. |

Since there is a sink of weight at least 1/|w| in D,, the lemma implies the
existence of a path of length at most 2 [log,(|w|)T from x to a sink. For fixed grow-
ing csgs this bound is O(log(|w|)) since g>1 and since g only depends on the
grammar. Paths are called bounded if they are of length at most 2 [log,(Iw])]. A
derivation graph is bounded if there is a consistent set of bounded paths from all
vertices to sinks. Combining the above remarks with Lemmas 1 and 2, we get the
basis for the polynomial algorithm:

THEOREM 1. Every derivation graph of a growing csl which derives the word w is
bounded.

Blfil |

462 DAHLHAUS AND WARMUTH
4. MEMBERSHIP OF GROWING csl Is POLYNOMIAL

In the previous section we showed there are short paths from all vertices to sinks
in derivation graphs. We now use these paths to “cut” derivation graphs into
“pieces.” Each piece is bordered on the left and on the right by a path of length
O(log(|w|)). There is an exponential number of derivation graphs and pieces. We
therefore gather the essential information about a piece in a frame. Part of this
information will be a description of the left and the right path. There will be only a
polynomial number of valid frames, which are all found by the algorithm. The
information gathered in the frames will be sufficient to decide membership. The
same technique was used extensively in [GS85, GW85, GW86a] to show that
membership for various problems of k-parallel rewriting is polynomial. Also the
classic Cocke-Kasami—-Younger algorithm [Ka65, Yo67, Ha78] for context-free
language membership can be described using a simple notion of frames. We first
rewrite the Cocke—Kasami-Younger algorithm using all the essential notions of this
section: frames, valid frames, the valid frames of a derivation tree, instance of a valid
frame, basic frames, the set VAL of all valid frames. This will help the reader who is
familiar with the Cocke—Kasami-Younger algorithm to understand this section.

Assume that we are given a context-free grammar in Chomsky normal form
[Ha78]. Let w be the word to be tested for membership. A frame is a tuple (4, /, r)
s.t. 4 is a symbol of the alphabet and 1</<r<|w|. Note that there is only a
polynomial number of frames. A frame (4, [, r) is valid if A % w,w,, -+ w, in the
context-free grammar. We call the derivation tree that corresponds to such a
derivation an instance of (A4, / r). Observe that valid frames parameterize all
derivation trees that derive subwords of w. The valid frames of an arbitrary
derivation tree D are all frames for which there is a subtree of D that derives a sub-
word of w. It is easy to see that S % w iff (S, 1, |w|) is valid. (This corresponds to
Theorem 2.) :

The Cocke-Kasami-Younger algorithm simply computes the set VAL of all valid
frames: :

0. Initialize VAL with the set of all basic valid frames: {(w,, i, i): 1 <i<|w|}.
Repeat
1. Add the frame (4, i, i) to VAL, if the grammar contains the production 4 — b and if (b, i, i) is in
VAL. '

2. Add the frame (4, /, r) to VAL, if the gramar contains the production 4 — BC and if (B, [, m) as
well as (C, m, r) are in VAL.
Until no new frames can be added to VAL.

The membership algorithm for growing context-sensitive languages will follow
the same outline. The frames will parameterize pieces of the derivation graphs. We
need to be able to describe the paths bordering a piece on the left and on the right.
One notation for paths of derivation graphs is given in Fig. 2. The productions are
the labels of the production vertices on the path and the numbers specify which suc-
cessors and predecessors are on the path. These numbers are necessary because for

|

bl

GROWING CONTEXT-SENSITIVE GRAMMARS 463

A wio wy

2/AA - AAAA/(4,3)/AAA - QRAA/(2,2)/OR — Awow,, /3
F1G. 2. The description of a path (in boldface).

a given production o« — f in the grammar some symbols might have multiple
occurrences in o or f. We could present the algorithm using the notation of Fig. 2
which would be more efficient. But for the sake of simplicity of the presentation we
assume that the grammar is in a special form.

A grammar is called a one-grammar if for each production « — § in the grammar
each symbol of the alphabet occurs at most once in « and at most once in . Using
standard methods of Formal Language Theory, it is easy to construct an equivalent
one-grammar for a given grammar by increasing the size of the alphabet and by
adding chain productions. For chain productions || = || =1 must hold.

In the following we outline the construction of an equivalent one-grammar.
Details are left to the reader. Assume there is a production o — f8 in which some
symbol A (terminal or nonterminal) appears twice in «. In this case the two
occurrences of 4 in the production are replaced by two new nonterminals 4, and
A,. Furthermore two new productions are added to the grammar: 4 — 4, and
A — A,. By repeatedly applying the above, double occurences of symbols from the
left-hand sides of productions are eliminated. With a similar construction we can
eliminate double occurrences from the right-hand sides of productions.

Since for the membership problem we assume that the grammar is fixed, the size
of the equivalent one-grammar will also be fixed and independent of the input word
to be tested for membership. Observe that the original grammar and the equivalent
one-grammar define the same language. Furthermore derivation graphs for the
original grammar translate into derivation graphs for the corresponding one-gram-
mar and vice versa. A path in the derivation graph of the one-grammar is at most
three times as long as the corresponding path in the “equivalent” derivation of the
original grammar.

This motivates the following assumptions for the rest of this section. The fixed
growing csg of the membership problem is given by its equivalent one-grammar.
Paths in derivation graphs of the latter grammar are bounded if they are of length
6 [log,(|w|)] instead of 2 [log,(|w|)7. Theorem 1 also holds for the equivalent one-
grammars with the new bound. (Recall that g is the growth-ratio of the original
growing csg.)

[N

464 DAHLHAUS AND WARMUTH

The input word w which is to be tested for membership is denoted as
wyw, - wy,,. To get a simple description of the algorithm we add dummy symbols
to the beginning and end of w. Let [and] denote two symbols which are not in the
alphabet of the grammar. Set w,=[and w,,, ;=]

To decribe a path n=x,, x,,.., x, in a derivation graph of a one-grammar, it is
now sufficient to use the sequence w(x,)/w(x,)/ - /w(x,) which is called the label-
ing sequence of = and is denoted by Q(n).

Similarly to paths, a labeling sequence is bounded if it is of length at most
6[log,(Iwl)]. A frame is a tuple (¢, 4, p, L, 1) s.t. te V2UV, 4 and p are bounded
labeling sequences starting with the first respectively last symbol of 7, and
o<iI<r<|wl + 1.

Intuitively, the above frame specifies a “piece” of a planar derivation graph which
might appear in the cut-and-paste process. This piece is bordered on the left (resp.
right) by a path labeled with 1 (resp. p). The piece derives w;, w,, i,..., W,, i.€., 4
ends at a sink labeled with w,, p ends at a sink labeled with w, and the sinks in
between are labeled accordingly. The word ¢ specifies how the “piece” starts. If the
left and right path start at the same vertex (unary frame) then ¢ is the label of that
vertex. In the case where the paths start at different vertices (binary frame), ¢ con-
sists of the labels of both vertices. See Fig. 3 for examples. The polynomial running
time of the membership algorithm for fixed growing csls heavily relies on the fact
that the number of frames is polynomial in |w|. Note that there is only a
polynomial number of labeling sequences of bounded paths (length up to
6 [log,(|w|)7) since g is a positive constant.

Not every frame corresponds to a piece of a derivation graph, only valid frames
do. A frame is valid if and only if it is a valid frame w.r.t. a bounded derivation

0. (w3wy, ws, wy, 3,4)

1. (D, D/CDE - Twywgwg/w,, DJCDE — Twowgwg /w4, 7,7)

2. (S1,S/S— ABCDE/E/CDE — Tw,wgwq /w4, 1,7, 10)

2'. (PC, P/IOP > wyMN/N/MNT - wiw,wswg/ws,
C/CDE - Twowgwg/w,, 5, 7)

F1G. 3. Some valid frames with respect to a derivation graph and a set of bounded consistent paths
(in boldface); the symbols of the first component of each frame are encircled.

B

GROWING CONTEXT-SENSITIVE GRAMMARS 465 -

graph D and a consistent set of bounded paths /7= {r, | n, starts with the symbol
vertex y of D} from each symbol vertex of D to a sink.?

DEerFINITION. The valid frames of (D, IT) are given as follows:
(1) The unary frame (w(v), 2(=n,), 2(=n,), 1, 1) is valid if -
(i) v is a symbol vertex of D;
(ii) =, ends at a sink labeled with w,.
(2) The binary frame (w(u) w(v), Q(r,), (=n,), I, r) is valid if

(i) u and v are symbol vertices of D s.t. adding the edge (i, v) to D does
not violate the planarity of D;

(i) the edge (v, w) does not leave the planar circle which encloses all edges
of D and is defined by the edges between adjacent sources, the edge
between the rightmost source and the rightmost sink, the edges
between adjacent sinks, and the edge between the leftmost sink and the
leftmost source (see broken circle of Fig. 3);

[LTIEERIT]

(iii) there is no path from u to v and vice versa;
(iv) =, ends at some sink s;

(v) the r—17+1 sinks starting from s going to the right are labeled with -
Wis Wi 1o W,

(vi) the (r—/+ 1)th such sink is the one at which 7, ends.

There are many valid frames beloning to (D, I7). For a particular frame we want to
specify the subgraphs of derivation graphs which correspond to that frame. Let
F=(t,4, p, 1, r) be a valid frame of some tuple (D, IT). If F is unary then p=4and
the path of vertices in D which corresponds to A is an instance of F. In the case
where F is binary then the subgraph 7 induced by the vertices v of D for which the
following conditions hold is called an instance of the frame F:

(i) v has a predecessor amongst the two vertices corresponding to f;
(ii) =, ends at a sink corresponding to w,,, where /<m<r;

(iif) if v is not on the path corresponding to A but 7, and A have some ver-
tex x as their first common vertex, then the predecessor of x on 4 is he
left of the predecessor of x on 7, ;

(iv) if v is not on the path p but m, and p have some vertex x as their first
common vertex, then the predecessor of x on p is to the right of the
predecessor of x on ,.

Intuitively 7 consists of all vertices of D “below” T, to the “right” of 1 and to the
“left” of p. Applying the above definition of valid frames gives the following
equivalence. -

3 Note that D does not necessarily derive the whole word w, but in the case where w and the word
derived by D have no subword in common then no valid frames belong to D.

466 DAHLHAUS AND WARMUTH

THEOREM 2. S % w if and only if there are two valid frames ([S, [, p, 0, m) and
(S7, u,1, m, |w| + 1), for some bounded path p and 0 <m<|w|+ 1.

Proof. Assume S % w. Theorem 1 implies the existence of a bounded derivation
graph for S % w. By adding two vertices corresponding to the dummy symbols
[and] one gets a bounded derivation graph D for [S]Z% [w]. Let IT be some
bounded set of consistent paths of D as defined above. Furthermore let v be the
source of D which is labeled with S and assume n, ends at the mth symbol of w.
From the above definition it follows that ([S, [, Q(xn,),0,m) and
(81, Q(=,), 1, m, |w| + 1) are valid frames of (D, IT).

To prove the converse let I be an instance of ([S, [, #, 0, m) and J be an instance
of (S, u,], m, |w| + 1). Assume that I and J have distinct sets of vertices. By iden-
tifying the vertices on the rightmost path of I with the vertices on the leftmost path
of J one can build a derivation graph for [S] % [w]. Finally removing the two
nodes labeled with the dummy symbols [and] leads to a derivation graph for
SE:w. |

ALGORITHM

(*Constructs the set VAL of all valid frames.*):
(*We assume that |w| > 3.*)

0. Initialize VAL with the sets of basic unary and binary frames

{wi, wi, wi, 1, D):0<ES WL+ 13U {(Wiw o, wis wip 1, 6 i+ 1):0<i< W]}
Repeat
1. (*Generating a new valid unary frame from a valid unary frame.*)

Add the frame (A4;, A,/P/A, A;/P/A, I,])to VAL, if P=A,A, - A, — B, B," " B, is a production of
the grammar and if (B}, 4, 4,1, /) is in VAL.

2:1. (*Generating a valid binary frame from a valid unary frame; the two symbol vertices that corre-
spond to the top of the new frame have the same production vertex as their immediate successor.*)
Add the frame (A4;A4;,,, A;/P/}, A; /P[4, I,1) to VAL, if P=A,A,* A, > BB, B, is a
production of the grammar and if (B;, 4, 4,1, 1) is in VAL.

2.2. (*A new valid binary frame is generated from valid binary frames.*)
Add the frame (XA, 4, 4,/P/p;, I, r;) to VAL, if P=A,4, - A,— BB, - B, is a production of
the grammar and if (XB,, 4, p;, l,r,) as well as (B;B, .1, pi» Pis1> Fi» Fiv1), for 1<i<j, are in
VAL.

2.3, (*Symmetric to Step 2.2.%)
Add the frame (4, Y, A,/P/;, p,1;,r) to VAL, if P=A,4, - A, - B, B, B, is a production of
the grammar and if (BB, , A, Aii1s s 114 y), for j<i<k’, as well as (By Y, Ay, p, Iy, r) are in
VAL.

Until no new frame can be added to VAL.
THEOREM 3. The algorithm finds exactly all valid frames and can be implemented
in polynomial time.

Proof. The first part of the theorem is proved in two inductions. In Induction 1
we show that all frames in the set VAL of the algorithm are valid according to the
above definition. Induction 2 shows that all valid frames are in the set VAL created

RN

GROWING CONTEXT-SENSITIVE GRAMMARS 467

W, wr,

w w
1 i ;i e

FiG. 4. Schematic description of the Cases 1-2.3 of the algorithm; labeled paths are indicated in
boldface and the symbols of the first component of each frame are encircled.

by the algorithm. Note that the above Definition and the Algorithm are outlined in
the same way. A schematic description of the algorithm is given in Fig. 4.

Induction 1. Let F be the first frame added to VAL by the algorithm which is not
valid according to the above definition. Let R be the set of frames of VAL which
caused the algorithm to add F to VAL. Clearly the frames of R are valid. By com-
bining instances for the frames of R one can build an instance for F (see proof of
Theorem 2) and this is a contradiction to the assumption that F is not valid. For a
complete proof we need to distinguish in which step F was added to VAL and
reason in each case that F is valid. We only show this for Step 2.3. The remaining
cases are similar.

Let [;, for j<i<k’, be an instance of the frame (B,B;, |, A;, 4,41, L, 1,4 1) (see
Step 2.3) and I, be an instance of (B, Y, A, p, I, r). Since these frames are valid
the instances exist. Assume that the vertex sets of the instances are disjoint. Let a
and p be two new vertices s.t. w(a)=A4, and w(p)=A,"--A, - B,B, - B,.. To
build the instance for F we combine the instances by identifying the vertices on the
rightmost path of J; with the vertices on the leftmost path of I, ,, for j<i<k'
Furthermore, we add the edges (a, p) and the edges (p, v,), for j<i<k’, where v, is
the vertex corresponding to B,. Since there is an instance for F this frame must be
valid and we get a contradiction.

Similarly one can prove in a second induction that all valid frames are in the set

[T

468 - DAHLHAUS AND WARMUTH

VAL created by the algorithm. Assume F=(t, 4, p, [, v) is a valid frame of (D, IT)
(see the above Definition) which is not in VAL. Let T be the vertices of D which
correspond to f. We choose F so that the number of vertices which have a
predecessor in T is minimum. In Step 0 all valid frames are added to VAL for which
the length of both 4 and p is 0. Thus in the frame F either 1 or p is of positive
length. We distinguish the following cases.

(1) |TI=1, A=p and A has positive length;
(2.1) |T| =2, the vertices of T have a common successor;

(22) |T|=2, the vertices of T do not have a common successor, p has
positive length;

(23) |T1=2, the vertices of T do not have a common successor, A has
positive length.

We still need to show that in each case F is added to VAL by the algorithm which
is a contradiction. We only show this for Case 2.2. The remaining cases are similar.

Let T= {u, v}, w(u)=X, w(v)=A4,, let the successor of v be labeled with the
production 4,4, -- A, - BB, - B,., and let v, be the vertex of D corresponding
to B, Because of the minimality of F the set VAL contains the frame
(XB,, Q(n,), 2(n,,), I, r,) and the frames (B,B,,,, 2(=n,), 2(=n,,,,), riri,,), for
1 <i<k’, where w, corresponds to the sink where 7, ends and w,, to the sink at
which =, ends, for 1 <i<k’. We conclude that F would have been added to VAL in
Step 2.2 which is a contradiction.

The polynomiality of the algorithm follows from the fact that the number of
different frames is polynomial and from the fact that only a constant number of
different frames need to be considered to create a new valid frame. |

Combining Theorems 2 and 3 gives us the main result of this paper.

THEOREM 4. The membership problem for fixed growing csgs is polynomial.

Proof. Given an input word w we compute the set VAL of all valid frames w.r.t.
w using the above polynomial algorithm. We then check whether there are two
frames ([S, [, u, 0, m) and (S7, i, 1, m, |w| + 1) in VAL. Theorem 2 guarantees that
the answer is yes iff the word w is in the language. Since |[VAL| is polynomial the
test requires only polynomial time. J

In the conclusion section we discuss parallel algorithms for this problem.

5. NP-COMPLETE GROWING SCATTERED LANGUAGES

We will exhibit a fixed growing scattered language which is NP-complete. A scat-
tered grammar (scg) G is a quadruple (V, 2, P, S) where the components have the
same meaning as for a csg except that the productions of P are defined differently
[GH68]. The productions have the form (A4, A,,.., Ay) = (o}, 0y,..., Gz), S.t.

i

[

GROWING CONTEXT-SENSITIVE GRAMMARS 469

A;eV—2, a;e V* and |o,| > 1. In a growing scg the last condition is replaced by
la;| > 1.

As in a derivation step for csgs, the left-hand side of a production is replaced by
the right-hand side, but in the case of scgs the symbols 4, need not be adjacent. For
to words w and v of V*, u=v if u=uAuy - Au,y, v=u,,u, "~ au, ., and
(A Ag) = (g, i) is in P. The (growing) scattered Inguage defined by the
(growing) scg G is the set L(G)={w | S % w and we Z*}.

The main open problem concerning scattered languages (scls) is the question
whether every csl is also a scl. This is rather unlikely, but it holds if productions of
the type (A;,..., Ax) = (Cyyey Ay), St |ty -+ o] =k are allowed [GW86b].

It is easy to see that L= {ucu®cu:ue {a, b}*} (see introduction of Sect. 3) is a
growing scl. Since the symbols to be rewritten are not required to be adjacent, the
derivations in different parts of the word can be synchronized.

In a growing scg it takes at most |w| steps to derive a word w. Thus the growing
scls are a subclass of NP. We will present a polynomial reduction of 3-Partition to
a growing scg.

3-Partition.

Instance. 3k numbers n; and a bound B.

Question. Can the numbers be partitioned with k£ 3-element subsets each of
which sums to B.

3-Partition was the first problem to be shown strongly NP-complete, ie., it
remains NP-complete even if the n; are encoded in unary [GJ78]. The language C
for which we will provide a growing scg has the property that {n,,..., n3;, B) is an
instance of 3-Partition if and only if the word xa™xa™ - - xa"*(yb®)* is in C.

Note that the word describes the instance of 3-Partition and that its length is
polynomial in the length of the unary encoding of the instance. Thus the above
equivalence implies that C is NP-complete.

THEOREM 5. There are fixed, groing scls* which are NP-complete.

Proof. We will construct a growing scl C=L(G) which fulfills the above
equivalence. To simplify the construction, we assume that the numbers n,,
1 <i< 3k, are all at least three and n> 1,

G=({a,bxy,X, X Y, Y Y}, {abxy},PS),

where
P={(S)- (XYYY),(Y)-> (YYYY)

(X, Y) - (xaX, yb¥), (X, ¥) - (xaX, bY),
(X, Y) > (aX, bY) |(aaX, bb)| (aa, bb)}.
* The theorem also holds for the case were the language is unordered [Sa73] in addition to being

growing and scattered. Note that the grammar used in the reduction is a growing unordered scattered
grammar.

”‘1“ (BRI
|

470 DAHLHAUS AND WARMUTH

Outline of the proof: To show the above equivalence observe that the grammar
produces a sequence of blocks of a’s followed by a sequence of blocks of &’s. The
sizes of the blocks of a’s correspond to the numbers ;. While X is deriving xa™X
either some Y derives yb™ or some ¥ derives b". There is a block of b’s for each n;,
but the blocks of b’s are permuted and grouped in threes. Each group of three sums
to B.

A more detailed proof: Suppose we are given a solution of the instance of 3-Par-
tition, i.e., disjoint sets A4 4» 1 <g<k, each of which contains 3 n;s that.add to B.
We will show that the word w = xa"‘xa"2 - xa"*(yb®)* that describes the instance
of 3-Partition is in L(G). Clearly S % X(YYY)*. Associate the set A, with the g th
group YYY and associate each of the 3 elements of the set with one of the 3 sym-
bols Y, ¥, and ¥, respectively, in the group. The association within each group is
arbitrary. The derivation X(YY¥)* £ w is organized in 3k phases. In the Jjth phase,
for 1 <j<3k, X is rewritten to xa”X and in parallel the Y-symbol (resp. Y-symbol)
that is associated with n; is rewritten to yb™ (resp. b:‘f). In the 3kth phase X is
rewritten to xa™* and in parallel the Y-symbol (resp. Y-symbol) that is associated
with nj, is rewritten to yb™* (resp. b™*). Since the numbers of A, add to B each
group YYY derives yb®.

For the opposite directions assume that S % w, where w=xa"xa"x-
xa"*(yb®)*. Normalize the derivation by applying the production steps (Y)
(YYYY) as early as possible within the derivation of w. The normalized derivation
has the form:

SE X(YYY)E w

The symbol X derives X and after a number of steps X again. More exactly X
produces xa™X at the jth phase, for 1 <;< 3k, and xa™ in the last phase. Further-
more in the ith phase, for 1 <i< 3k, a particular Y (resp. Y) derives yb” (resp. b™).
Observe that each non-terminal Y is responsible for a terminal y in w and the Y’s
are 3 apart. The terminal y-s function as separators and each group of Y¥¥ must
produce exactly B b’s. Each group thus corresponds to a different set of 3 numbers
that adds to B and there are k such sets. |

6. CONCLUSIONS

We can express the membership problem for fixed growing csls as a membership
problem for a variable context-free language. Given input word w and a fixed grow-
ing csg G, then we construct a context-free grammer G', from the frames (Sect. 4) of
w and G. The frames form the nonterminals of G/,. Note that the number of nonter-
minals is polynomial in w. The derivations of G/, are defined using the recursions of
Steps 1-2.3. of the Algorithm of Sect. 4. The basic frames of Step 0 all derive the
empty word &. We still need to add a special start symbol S’ which derives all com-
binations of two frames ([S, [, 0,m) and (S1,u 1, m, |w| + 1) (see also
Theorem 2).

GROWING CONTEXT-SENSITIVE GRAMMARS 471

It is easy to see that we L(G) iff ee L(G,,). Also the derivation trees for ¢ in G,,
have ony O(|w|) nodes since the original grammar G is growing. We now sketch
that growing csls are in the LOG(CFL), the family of languages that are log-tape
reducible to context-free languages [Su78]. LOG(CFL) is exactly the family of
languages recognized by a nondeterministic log(n) tape bounded auxiliary
pushdown automata within polynomial time [Su78]. n denotes the length of the
input. To see that L(G) is accepted by the latter type of automata, we simulate
derivations of G/, with a pushdown automata. The additional log(|w|) tape is
needed to store the nonterminals (frames) involved in the current production. Note
that a frame requires at most log(|w|) space.

It was further shown in [Ru807] that LOG(CFL) are those languages accepted
by an Alternating Turing Machine in log(n) space and polynomial tree size. The
space complexity and parallel time complexity of LOG(CFL) has been studied.
Every language of LOG(CFL) can be recognized in (log(rn))* space by a deter-
ministic Turing machine [Co70]. Thus growing csls can be recognized within the
same space complexity as the lowest space complexity found for context-free
languages [LSH65].

As for the parallel complexity [Ru80], LOG(CFL) is contained in NC?, the class
of problems solved by uniform circuits of depth O((log(n)?) using a polynomial
number of bounded fan-in gates. For example NC? circuits for the membership
problem in a fixed context-free language are described in [UV85] and these circuits
also solve the question whether ¢ e G),. Actually [UV85] gives PRAM algorithms
for the same problems and these algorithms translate into circuits. The PRAM
algorithms run in O((log(|w|)* parallel time and require a polynomial number of
processors.

We showed that the membership problem for fixed growing csls can be solved in
polynomial time and has reasonable space complexity and parallel time complexity.
The main open problem is to determine the complexity of membership for
“variable” growing csls, i.e., not only the word to be tested but also the growing csg
is a variable of the input. The question is whether this problem can be solved in
polynomial time or whether it is NP-complete.

ACKNOWLEDGMENTS

We would like to thank Allen Goldberg and Habib Krit for helping to simplify the presentation of the
results. Furthermore we are thankful to an anonymous referee who pointed out that growig csls are
accepted by Alternating Turing Machines in log(rn) space with polynomial tree size and are thus con-
tained in LOG(CFL) (see conclusions section.)

REFERENCES

[BPS61] Y. M. Bar-HiLLEL, M. PERLES, AND E. SHAMIR, On formal properties of simple phase
structure grammars, Z. Phonetik Sprachwiss. Kommunikationsforschung, 14 (1961), 143-172.

[Bo71] R. V. Book, Time bounded grammars and their Languages, J. Comput. Systems Sci. 5
(1971), 397-429.

NI

472

[Bo73]
[Bo78]
[Ch59]
[Co70]

[DWS6]

[GJ78]
[Gl64]
[GS85]

[GW85]

[GW86a]

[GW86b]

[GH68]
[Ha78]

[Ka72]

[Ka65]

[Kué4]
[Lo70]
[Ru80]
[Sa73]
[LSH65]
[Su78]

[UV85]

[Yo67]

DAHLHAUS AND WARMUTH

R. V. Book, On the structure of context-sensitive Grammar, Inernat. J. Comput. Inform.
Sci. 2 (2) (1973), 129-139.

R. V. Book, On the complexity of formal grammars, Acta Inform. 9 (1978), 171-182.

N. CHOMSKY, A note on phase-structure Grammars, Inform. and Control 2 (1959), 137-167.
S. A. Cook, Path systems and language recognition, in “Proc. Second Annual ACM Sym-
posium on Theory of Computing,” pp. 70-72, 1970.

E. DAHLHAUS AND M. K. WARMUTH, Membership for growing context-sensitive grammars
is polynomial, in “Proceedings of the Eleventh Colloquium on Trees in Algebra and
Programming,” Lecture Notes in Computer Sience, Vol.214, Springer-Verlag, Berlin,
March 24-26, 1986.

M. R. GAREY AND D. S. JoHNSON, “Computers and intractability,” Freeman, San Francisco
78.

A Grapku, On the complexity of derivations in phase-structure grammars, Algebri i
Logika, Sem. 3 (5-6), (1964), 26-44. [Russian]

J. GonNczarowskl AND E. SHAMIR, Pattern selector grammars and several parsing
algorithms in the context-free style, J. Comput. System Sci. 30 (1985), 249-273.

J. GoNczarowskl AND M. K. WARMUTH, “Applications of Scheduling Theory to Formal
Language Theory,” Fundamental Studies Issue of Theoretical Computer Science, Vol. 37,
No. 2, pp. 217-243, 1985.

J. Gonczarowski AND M. K. WARMUTH, “Manipulating Derivation Forests by Scheduling
Techniques,” to appear in Fundamental Studies Issue of Theoretical Computer Science,
1986.

J. Gonczarowskl AND M. K. WARMUTH, “Scattered versus Context-Sensitive Rewriting,”
Technical Report CS-86-11, Department of Computer Science, Hebrew University,
Jerusalem, July 1986.

S. GREIBACH AND J. HOPCROFT, Scattered context grammars, J. Comput. Systems Sci.. 3
(1969), 233-249.

M. A. HarrisoN, “Introduction to Formal Language Theory,” Addison-Wesley, Reading,
Mass., 1978.

R. M. Karp, Reducibility among combinatorial problems, in “Complexity of Computer
Computations”, (R. E. Miller and J. W. Thatcher, Eds.), pp. 85-103, Plenum, New York,
1972.

T. Kasami, “An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free
Languages,” Science Report AFCRL-65-758, Air Force Cambridge Research Laboratory,
Bedford, Mass., 1965.

S. Y. Kuropa, Classes of languages and linear bounded automata, Inform. and Control, 7
(1964), 207-223.

J. Loecks, The parsing of general phase-structure grammars, Inform. and Control. 16
(1970), 443-464.

W. L. Ruzzo, Tree-size bounded alternation, J. Comput. System Sci. 21 (1980), 218-235.
A. SALoMAA, “Formal Languages,” Academic Press, New York, 1973.

P. M. Lewss, R. E. STEARNS, AND J. HARMANIS, Memory bounds for recognition of context-
free and context-sensitive languages, in “Proc. Sixth Annual IEEE Symposium Switching
Circuit Theory and Logical Design,” pp. 191-212, 1965.

H. SupBOROUGH, On the tape complexity of deterministic context-free languages, J. Assoc.
Comput. Mach. (1978), 405-414.

J. D. ULLMAN AND A. VAN GELDER, “Parallel Complexity of Logical Query Programs,”
Technical Report STAN-CS-85-1089, Department of Computer Science, Stanford Univ.,
1985, to appear in 27th Symposium on Foundations of Computer Science, Toronto,
Canada, 1986.

D. H. YOUNGER, Recognition and parsing of context-free languages in time n?, Inform. and
Control 10 (1967), 189-208.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium

Vi 12 i 1

