K \ / Content of this tutorial' \

Online Learnlng and Bregman Dlvergences e P I: Introduction to Online Learning

Tutorial at Machine Learning Summer School — The Learning setting
— Predicting as good as the best expert

Taipei, Taiwan, July 2006

— Predicting as good as the best linear combination of experts
e P II: Bregman divergences and Loss bounds
Manfred K. Warmuth — Introduction to Bregman divergences
— Relative loss bounds for the linear case
— Nonlinear case & matching losses
University of California at Santa Cruz, USA — Duality and relation to exponential families
http: //www.cse.ucsc.edu/ "manfred — On-line algorithms motivated by game theory
e P III: on-line to batch conversion, applications

— Simple conversions
Help with the tutorial: Gunnar Rdtsch — Caching and the disk spin down problem

— Other applications and conclusion

K j Qoal: How can we prove relative loss bounds? j

1 2

f \ K Predicting almost as good as the best expert I\
Sources of Information' predic  true

EF, Ey FE3 --- E, | tion label loss
day 1 1 1 0 0 0 1 1
day 2 1 0 1 e 0 1 0 1
day3 0 1 1 1 1 1 0

dayt @1 X2 Tesz 0 Ten Yt Yt [yt — Uil

Master Algorithm
Fort =1 To T Do

Emphasizes ”potentials” - Here ”Bfegman Divergences” Get instance z €{0,1}"
Predict Ut € {0, 1}
Get label y: € {0,1}

k J \ Incur loss lys — Gt J

e JMLR, JML, COLT, NIPS, ICML




K More general online settings'

Protocol:

For t =1 To T Do

Get instance x; € R"
Predict g €Y

Get label Yy €Y
Incur loss L(ye, Je, 1)

Problem instances:

e Classification: @, y: € {0,1}, e.g. L(y,§,x) = |y — 9|

e Regression: i, € R, e.g. L(y,§,2) = (y — §)°
e Density estimation: no label, e.g. L(y, §, ) = —log P(x|0)

KGO&I: small total loss Y, Ly, i, )

~

/
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f A run of the Halving Algorithm'
majo true
E1 E2 E3 E4 E5 E6 E7 ES Ilfl/ label  loss
1 1 0 0 1 1 0 0 1 0 1
X X 0 1 X X 1 1 1 1 0
X X X 1 X X 0 0 0 1 1
X X X T X X X X
consistent

For any sequence with a consistent expert
Halving Algorithm makes at most < log, n mistakes

K(GOOd bound, but not optimal)

~

/ Expert setting: Halving Algorithm I \

l /

experts

predict
1

\/ consistent

experts

inconsistent
experts

e Predicts with majority

e If mistake is made, then number of consistent experts is (at

least) halved

e any mistake is “converted” into knowledge on the learning

problem: mistake driven learning

N J
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K What if no expert is consistent?' \
Sequence of examples S = (®1,91), ..., (@1, yT)

T
e total loss of algorithm A: L4(S) = Z L(A(xt), yr)
t=1

T
e total loss of i-th expert E;: L;(S) = Z L(E;(z+),yt)

t=1
Want bounds of the form:

VS : La(S) < a minL;(S) + b log(n)

(2

where a, b are constants

Qounds loss of algorithm relative to loss of best expert j

8



K Weighted Majority Algorithm I

One weight per expert

Can’t wipe out experts!

/ predict
all 0 predict

1

experts
vote with
their weight

e Predicts with larger side

e Weights of wrong experts are multiplied by 8 € [0, 1)

~

/

M = Total number of mistakes of WM
M; = Total number of mistakes of expert F;
total final

1+ 6\
- W-
(7)) w
weight

n n
Mriy; My
Wry = ZwT+1,j = Zﬂ T > fET

j=1 j=1

Wria

IN

where 7 = argmin; Mri;

1+ M
()
2 ~—

n

We got:

g

v

\_

~
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/ Number of mistakes of the WM algorithm'

M;; = # of mistakes of E; before trial ¢
W = Mei weight of Fj; at beginning of trial ¢
W,y = Z wy,; total weight at trial ¢

i=1
Minority < %Wt, Majority > %Wt

If no mistake then minority multiplied by G:

Wi < 1 W
If mistake then majority multiplied by G:
) 1+
W< 1 4w+ 5w = P w

majority

k minority

~
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f Relative Loss bound for Weighted Majority' \

Solving for M:

InL 1

M < g i + 5— Inn
gz gy

M <

2.63 min M; + 2.63Inn
<~ <~

ﬂzl/e a b

For all sequences, loss of master algorithm
is comparable to loss of best expert
= Relative loss bounds

-
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K Other Loss Functions' \

absolute loss L(y,9) = |ly—79|
square loss Ly, 9) = (y—19)>2
entropic loss Ly,9) = yhhi+(1-y)h %5’
y, 9 € [0,1]
entropic loss + L(y,9) = HT” In }]%Z + 1_77’ In }%g,
Y, ?J € [717 +1}
. N 2 -\ 2
hellinger loss L(y,5) = % (\/f —v1- y) + % (\f - \/@
y,9 € [0,1]
13

Bounds for other Loss Functions.

V sequences S of examples ((z¢, y1))1<i<T
where x; € [0,1]" and y, € [0, 1]

Lwa(S) < miin \L}Li(S)—l-i/jj/ln(n)
a b

LWA(S) - Iniin LL(S) < bln(n)

regret
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/ How does it work with other loss functions? ' \

One weight per expert:
wy; = Jé; Lii — o= Lty

where L; ; is total loss of E; before trial ¢

and 7 is a positive learning rate

Master predicts with the weighted average (WA)

W4

Vi = —=n—— nhormalized weights
Z¢:1 Wt 5
n
Yy = E Vi Tt = Ut - Ty
i=1

where z; is the prediction of F; in trial ¢

N J

14

f Worst-case regret bounds' \

b ‘ WA  fancy

entropic 1 1
square 2 1/2
hellinger 1 .71

e Improved constants of b = 1/n when Master uses fancier pred.

Ko For the discrete loss and the absolute loss: a > 1 /

16



4 )

Potential: f}] In W,

new potential old potential

1 1
Key inequality: L(y,vi @) < ——InWip —(——1InWy)
n n
. 1 1 Wt+1
= —— In ——=

n Wi

drop of potential

N /

17

4 )

Usefulness:

e Easy to combine many pretty good experts
(algorithms) so that Master is guaranteed
to be almost as good as the best

e Bounds logarithmic in number of experts

(multiplicative updates)

19

-
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Proof continued '

Telescoping:
1. Wry
L S) < —~In———
wa(S) = = I
1, 1
= —Z1n Y e nkris(S)

1 1

< —Zln e () i =argmin Lpy ;
n o on J

_ ! In le—nLTﬂ,i(S)
N n

1
= LT+171‘(S) + ;lnn

18

-

Questions:

How to obtain algorithms that do well compared to
best linear combination or

best thresholded linear combination of experts?
How to motivate the updates?

What are good measures of progress?

What are good loss functions?

Methods for proving relative loss bounds?

20




K Example: Learning Disjunctions of Experts' \

variables/experts

E. E, By E, |labl E\VE, E3VE

1 1 0 0 0 1 0

1 0 1 0 1 1 1

0 1 1 1 0 1 1

0 1 0 0 1 0 0

Tyl T2 Te3 Ted T T

3 2

mistakes

E,V Ej becomes u=(1,0,1,0)

KEl V Fj3 is one on x; € {0,1}" iff

u-x; > 1 J
21

The Perceptron Algorithm'

In trial ¢: Get instance x; € {0,1}"
Ifw;, -, >0 then g, =1

else g; =0
Get label y; € {0,1}
If mistake then

wyp1 = we — 1 (Y — Yi) T

Rotation invariant if w; = (0,...,0)

N )

23

-

Weighted Majority on k-literal Disjunctions'

One expert per disjunction
(1) weights

Do as well as best k out of n literal (monotone) disjunction

# of mistakes
of WM

< 2630 + 263 k;m;i_
M is # of mistakes of best
Time (and space) exponential in k

Efficient algorithm have only one weight per literal
instead of one weight per disjunction

-

~

22

-

k-literal Disjunctions with Perceptron'

# of mistakes <4 A + 4kn

where A is # of attribute errors of best disjunction of size k, i.e.,
the minimum # of attributes that need to be flipped to make the
disjunction consistent

A<EkM
Lower bound for rotation invariant algorithms:

#mistakes = Q(n)

-

Perceptron Convergence Theorem (w; = (0,...,0), 8§ = %, n= s

24



K The Winnow Algorithm I

In trial ¢: Get instance x; € {0,1}"
If wy-xy > 6 then g =1
else 4, =0
Get label y, € {0,1}
If mistake then

=W ; e " (Je—yt) Te,i

Wt+1,i
Mistake bound (w; := %(1, o), 0= 31Tn3n7 e~ = %)
# of mistakes <4 A + 3.6 k ln%

Qot rotation invariant!

25

/ On-line Linear Regression'

Fort=1,...,7T do

Get instance xr: € R"

Predict Ut = Wi - Ty

Get label yt € R

Incur loss Li(we) = (ye — Qt)2
Update Wi 10 Wit

-
|

Assume comparison class {u} is a set of linear predictors

K U T—U-T

-

So far
e Learning relative to best expert for various loss functions

e Learning relative to best disjunction

-

e Perceptron versus Winnow and expansion into feature space

J
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f Examples of Updates'

Gradient descent
(weR")

w1 = wy — VL (wy)

= wi — 7](wt 7 yt) Tt

Exponentiated Gradient Algorithm

(w is probability vector)

OL¢(wy)

normalization
awm :| /

Wit1,s = We,; €XP {—77

27

-

~

/
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More examples of Updates'

Unnormalized Exponentiated Gradient Algorithm
(w > 0)

Mﬂ%q

thrl,i = wm— exp |:—T] 8w
t,i

Binary Exponentiated Gradient Algorithm
(w € [0,1]")

ONt(W,)
Wy, i €XP _7](911)7“

L — wei + we; €xp [—n%ﬁ”}

N /
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f Motivation of Updates I \

Gradient descent

Wit1,5 =

wir = argmin (|lw —wil 32 + 9y — w - 2,)*/2)

= wi — (Wi T —Yr) T
N——

WLy

Exponentiated Gradient Algorithm

t,2

Wepl = argmin <Z wiln —= +n(y —w - -’Bt)2/2>

w i=1

= wy; exp | —n (w1 - T, —Y;) Ty | / normalization
————

AWy Lt

31

/ More examples of Updates (cont) I

p-norm Algorithms
(w € R")

wipr = [ (f(wy) — n VL(wy))

where

1 1 2
f(w) = Vg”“’”i = Vg (Z |’wz'q>

i
and ¢ dual to p (i.e., % + % =1)
e p =2 becomes gradient descent

e p = O(logn) becomes EG-like algs

ko 2 < p < O(logn) interpolates between the two extremes

~

30
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Families of update algorithms'

parameter name of update
“divergence” family algorithms
[lw — we||3 Gradient Widrow Hoff (LMS)
Descent Linear Least Squares.
Backpropagation

Perceptron Algorithms
kernel based algorithms,...

> wiln u’ilL Exponentiated expert algs / Bayes update
Gradient Normalized Winnow
Algorithm “AdaBoost”

32
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Families of update algorithms (cont) I

parameter name of update
“divergence” family algorithms
Z ey wiln w“ill Unnormalized Winnow
+we,; — w; Exp. Grad. Alg.

Binary
Exp. Grad. Alg.

n . w;

Zz’:lwzln Wy 4
W 1-wy
+(1 —w;)In Twr;
any - -

“Bregman divergence”

Members of different families exhibit different behavior

/Alternate motivation: continuous updates \I

Continuous time = Ordinary differential equations

Gradient Descent
weR"
[ ]
W= *UVth(’wt)

Unnormalized Exponentiated Gradient Alg.
w>0

log(wg)= —Wth(wt)

Q 113 Versus entropic regularizatioy

33

/Alternate motivation: continuous updates (cont)\l

Discretization

F(wein) — fwy)

h

wipn = F1 (F(we) = 0 hVaw Li(wy))

= _nVLt (’l.Ut)

Weuse h =1

Wiyl = f_1 (f(wy) — eV Li(wy))

Conjecture: Forward Euler better:
Replace Vo Li(wy) by Vap Li(wiyr)

35

N J

N J

34

4 ™
Two main families'

e Additive: w =), ;yxy Multiplicative: w; ~ exp(d_, arx¢ ;)

13 entropic

Gradient descent Exponentiated Gradient

Rotation invariant 7?77

e We now give a problem that favors the multiplicative updates

Linear Versus logarithmic dependence in n

N J

36




K Let’s keep it simple' \

Linear Regression

e Examples (x4, y;)

e Linear hypothesis w

K. Predicts with g, = w - x4 J

37

Without embeddings II \

Any linear combination of k training instances predicts zero on all

n — k test instances
So loss 1 on n — k of the n instances

Average square loss over all n instances is > 1 — %

10

n = 1024 lg(n)

39

/ A hard problem?'

Hadamard Matrix:

instances — +1 -1 +1 -1

l

+1 +1 -1 -1

targets
e n instances and n targets

e Instances are orthogonal

ko Target weight vectors are units

38

-

Without embeddings III

For any linear combination of k£ rows of the n-dimensional

Theorem

Hadamard matrix and any of the n targets

the average square loss over all n instances is

>1- 2
n

-

40



K Spiffing it upI

Embed instance into a feature space
(b . Rn _ Rm
Original Space Transformed Space

X, "+, '=0
0.8 172

0.6
0.4

02

=02
=0.4
=06

=0.8

x
o
X2

Lo L

lh B W N = O = N W & W»

"5 o 5 5 0 5
%, xl'

(]5(1'1,1‘2) = (Sin(xl)a&)

’
K T1 T2

-

Good news I

Many of our favorite algorithms can be “kernelized”:

Linear Least Squares, Widrow-Hoff, Support Vector Machines,
PCA, Simplex Algorithm, ...

Kernel Trick

e Weight vector linear combination of embedded instances

o Individual features never accessed

\_

/ The Kernel Trick I \

If w linear combination of expanded instances, then

U= Zat () - d(x) = Zat () - d(x)

~——— K(X,T)
w

Kernel function K(z¢, x) often efficient to compute

O (21, mn) ) = (1,0 Ty T T X T . )

n 2n products

Kernel magic

n

K(z,z) = ¢(x) - ¢(2) = Z sz HZL = H(l + %)

ICl.niel el i=1
————
k o(2m) time O(n) time
42

K Linear combinations ?' \

Representer Theorem:

w = ar’lglg)i,nf <||w'|2 + nZ('w' - () — yt)2>
t

Solution w linear combination of the ¢(x;)

Rotation invariance:

Any algorithm whose predictions are not affected by rotating the
instances in feature space
must predict with linear combination of embedded instances

43

Qufﬁcient conditions! /

44
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Linear or non-linear ?'

e We give a problem for which kernel algorithms behave like

linear algorithms

e Embeddings don’t help

45
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e Use SVD spectrum

e After k instances weight space has rank k
and only k singular values can be ”captured”

1
\\\ Avg. square loss > 2 Z 57
o i=k+1
i k
s - 1-=
Hadamard Random "

47
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Main Result '

Theorem
e No matter how the instances are embedded
e No matter what k training instances chosen by the learner
e No matter what linear combination used

For one of the targets

average square loss on all n instances is 1 — £

-

46
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Additional Constraints '

n
wiz()andZwizl
i=1
-1 41 -1 +1 -1 +1 -1 +1
Problem matrix -1 -1 41 +1 -1 -1 4+1 +1
-1 -1 -1 -1 +1 +1 41 +1

e For above k instances, labeled by one of the 2¥ columns, only

consistent weight vector is unit identifying that column

e Weight space can have rank 2%

-

/
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Rows of random +1 matrix labeled by first column
Left: components of shortest weight vector over time

Right: same but with additional constraints

49

-

Average Squared Error'

EG kernel algs

—ln](gn) 1— % and

-

Maintain additional constraints?'

Use Exponentiated Gradient Algorithm

Kernel methods w =), o ®(x;)

EG w; = exp2t (@1 Jconst

Now log weights linear combination of expanded instances

-

~

50

K Which constraints? '

51
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Incorporating side info'

Kernel algorithms: none >1-k/n
BGew,>0and Sui—1 O[52)

— +41.001 +1.002 +1.003 +1.004

instances — +1.001 —1.002 +1.003 —1.004

+1.001 +1.002 —1.003 —1.004

—  +1.001 —-1.002 —-1.003 +1.004
T T T 7

targets

l

Now target determined by any single example
Trivial algorithm beats EG

~

53

Gave problem that cannot be learned by kernel base algs
e What is the optimal kernal for a given problem?
e What is the hard problem for multiplicative updates?

e Can multiplicative updates be kernalized?
Some cases are given by

e Can entropy regularization be replaced by || ||3 regularization
plus non-negativity and total weight constraints?

\_

/

55

/ Which matrix? ' \

Kernel matrix dot products of instances

Problem matrix instances as rows - targets as columns

e If eigen-spectrum of kernel matrix has heavy tail
then kernel not useful

— Picked wrong kernel

— Problem too hard

e If svd-spectrum of problem matrix has heavy tail
then problem not learnable

‘We showed:

e Hadamard problem matrix has heavy tail

ko Adding random features makes tail of kernel matrix heavy j

54

K Content of this tutorial' \

e P I: Introduction to Online Learning

— The Learning setting

— Predicting as good as the best expert

— Predicting as good as the best linear combination of experts
e P II: Bregman divergences and Loss bounds

— Introduction to Bregman divergences

Relative loss bounds for the linear case

— Nonlinear case & matching losses

— Duality and relation to exponential families

— On-line algorithms motivated by game theory
e P III: on-line to batch conversion, applications

— Simple conversions

— Caching and the disk spin down problem

— Other applications and conclusion

Qoal: How can we prove relative loss bounds? /
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For any differentiable convex function F'

K Bregman Divergences I

Ap(w,w) = F(w)- F(w)—(w—w)  VywF(w)

———
f(w)

supporting hyperplane
through (w, F(w))

~

57

6. V@AF(’EI), 'w)

f(w) = f(w)

7. Ap(wi, ws) + Ap(ws, ws)

\_

= F(w;)— F(ws) — (wy —w

F(wsy) — F(w3) — (wy — w3

/ Bregman Divergences: more properties'

V() — Vg (0Vap F(w))

2)f (w2

)f (w2)
) f(w3)

Ap(wi, ws) + (w1 —w2) - (f(ws) — f(w2))

59

Bregman Divergences: Simple Properties'

1. Ap(w,w) is convex in w

2. Ap(w,w) >0
If F convex equality holds iff w = w

3. Usually not symmetric: Ap(w,w) # Ap(w,w)

4. Linearity (for a > 0):
AFJraH(’iI), w) = Ap(fu,w) + aAH('fv,w)

5. Unaffected by linear terms (a € R, b € R"):
A

H+aﬁ+b(ﬁ}7 w) = AH(/&}7 ’l,U)

N J

58

f A Pythagorean Theorem I \

W

w* is projection of w onto convex
set W w.r.t. Bregman divergence
AF:

w* = argmin Ap(u, w)
uew

Theorem:

K AF(”? w) > AF(U7 UJ*) + AF(’w*v w)

/

60
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AF(’&U

Flw) =
f(w)

w) =

Squared Euclidean Distance

lwll3/2

w

1@]13/2 = [Jwl[3/2 — (@ — w) - w

[ — wl[3/2

(Unnormalized) Relative Entropy

F(w) = Z (w; Inw; — w;)
fw) = hw
W e
Ap(w,w) = Zl: <w1 lnw—i +w; — U}z)
61
Examples-3 I
Burg entropy
Fw) = ) ~hw
1
flw) = -
Ap(w,w) = Z (_mz g) -n

63

4 N
Examples-2 I

p-norm Algs (g is dual to p: 1% + % =1)
1 2
Fw) = §jwl?
1 2
fw) = VL
_ Looie 1
Ar(@.w) = L@+ 5wl - - fw)

When p = ¢ = 2 this reduces to squared Euclidean distance
(Widrow-Hoff).

N J
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f Examples-4: div. between density matrices' \

Umegaki Divergence

FW) = tr(WInW-W)
f(W) = InW
Ap(W,W) = tr (W(an “InW)+ W — \Tv)
LogDet Divergence
F(W) = —In|W|
fW) = W™
Ap(W, W) = 1n:‘\x)—|—tr(\7\7w_l) —n
64



-

iff

\_

w1 = argmin( Ap(w, w;)
w —_———

weight domain

progress in the analysis.

When loss L is convex (in w)

+

General Motivation of Updates I

Trade-off between two term:

Li(w) )
~——

label domain

Ap(w,w;) is “regularization term” and serves as measure of

Vw(Ap(w,w;) + n.Li(w)) =0

flw) =

flwy) +n VLi(w) =0
——

~V L (W)

= Wiy = f7

H(f(we) =V L(wy))

~

/
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Ap(w,w;) = [[w — w|3/2

Divergence: Euclidean Distance Squared' \

NN \

\\ w\
\\\‘\
\ \\\\ \\
LA ‘

wy = (=3/2,1) N\
=(1,-0.5) ‘f j \
ye=1 \ / /1)) )
/ / / I

\ \\\\, B S / / / / / / / / /] w//r /\’/"1/“/
N ~ 2 T4 S/ /Y ‘1/ /' "1 // /’v /é// / ," /
N —~_ ) )N/ // vy
\\\\ - / //////{ ////////
S~ //////// )/

—/
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Quadratic Loss I
Li(w) = (yr —w - x)*/2
w - T =Y
/ S /) /
/// //// //// 4 // //
/7//////2 // // // // )
/// ///// y /&é ;S S / /
wy = (—3/2,1) /,w/[j// /;/// YA / /,/ y // y
)/ '/ // // / / / YA
x; = (1,—0.5) ///f// /i/ '/ // / / Yy
_ /Z VYAV A A .
Yy =1 ¢ /’///?///// // / // w1//2///// 3
y ////// / / B /\ // / / /
0SS S S ! / S S
///// ////// // / / // // // / ///
/S /// / / // S / // / // // /
///:// Y, / / /// / '/ o/
/ / y /
A Wi/
66
K Loss + n Divergence'
Ap(w,wy) = [Jw — wy|3/2
wex, =y
Y7/ /{///i/ NN
///// //// / . / P g—
/) e - -
///i/;/ /// Y\
wy = (—3/2,1) /////'/// & .
vy,
/1)) / -
x+ = (1,-0.5) /////// / /1{//,,
[ /
yr =1 //' / J/ / r/’ ’,‘/ "\
[
n=0.2 s -
ST \\\ <
RN
VLA ~__
\\ \ \\\\\\
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w; = (=3/2,1)
Ty = (17 —05)
ye =1

\_

K Divergence: 10-norm algorithm divergence' \

Ap(w,wy) = Vi|wl?

AT

5 ’ AN

_ LAY
S [ARRRARARAN
?/ S AR
S \ \\\\\\\\\
e p LUV AN

S |

e 7 |

\
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Loss:
Divergence:

Update:

convexity
=
Lt (’LL) Z

Lt ('LU) =

Ar(u,w) = F(u) — F(w) — (u—w) - f(w)

How to prove relative loss bounds?'

L((x¢,yt),w) convex in w

fwegr) = f(we) = =1V Li(wy)

Li(we) + (u — wy) - Vap Ly (wy)

—_—————
update

= Li(w) - }] (= we) - (F(wesr) — flawy)

prop. 7 of Ap

1
= Lt('wt) + 7] (AF(U” wi1) — Ap(u, wy) — Ap(wy, wigq))

~

/
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Loss + 7 Divergence'

Ap(w,w;) = [[w —w|3/2
w- T =Yt
70000277777 AN /
/////%Z;////// // / ; ‘\\\\\\\ \\\\\?\\X\s\\s\\\ /
7 /nn
g // / / \ ARRRAANY /
we = (—3/2, 1) %///ﬁ///y///////// {/JV 1 \ \\\\ //,/,
/ / L
Ty = (1, *05) / |
S S /)
ye=1 T
n=0.2 ) // //f,/,///s“/’// /)]
g ///)( 7 %
—— %

-

First step: Teleskoping'

Summing over ¢

Z Li(wy) <

t N t

IN

t n

ZLt(u) + 1Z(Ap(u,wt) — Ap(u,weyq)

+Ap(wy, wt+1))

> Li(u) + l(AF(u,un) — Ap(u, wT+1))

>0

1
+EZAF(wt>wt+1)
t

1 1
< Y Li(u)+ 5AF(u7w1) + ;}Z Ap(we, weir)
t

t

Qny convex loss and any Bregman divergence!

~
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Second step: Relate Ap(w;, wiy1) to loss L;(w;)

Loss & divergence are dependent
Get Ap(wy, wit1) < const. Ly(wy)
Then solve for >, L;(wy)

Yield bounds of the form

> Li(wy) <a ) Li(u) +bAp(u,w)
t t
a, b constants, a > 1.

Regret bounds (a = 1):

time changing 7, subtler analysis [AG]

N J

K Nonlinear Regression I \

§ = hw )
f

e Sigmoid function h(z) = #
e For a set of examples (z1,y1),..., (zT,yT)
total loss Zle h(w - x) —y:)?/2

can have exponentially many minima

K in weight space [Bu.;\ll\\'y

/Bounds for Linear Regression with Square LOSS\I

Gradient Descent

S Lulws) < (1¢) 3 L) + - X303

t

||wt||2 < Xy, ||u||2 < Uz, ¢>0, n= f(chQ)
Scaled Exponentiated Gradient

1
S Li(w) < (14+0) 37 Luw) + S nn X2 U2
t t ¢

l[#t]|oo < Xoo [[ullt <Ur, ¢>0, 1= f(c, Xeo)
p-norm Algorithm
1+c¢

D Le(wi) < (1+¢) Y Lou) + —

\Jzilly < X llully < Uy, ¢ >0, = f(e, Xeo) )

74

4 N

2772
(r—1) X, U;

Want loss that is convex in w

N J
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h(z)

h(w - x)

(h=VH)

Ap(w -, k™ (y))

K Bregman Div. Lead to Good Loss Function' \

7

/ Idea behind the matching lossI

If transfer function and loss match, then

VwAg(w-x,h7 (y)) = h(w-z)—y

Then update has simple form:

fwir) = f(wy) —me(h(wy - x) — ye)xy

This can be exploited in proofs

But not absolutely necessary

One only needs convexity of L(h(w - x),y) in w

\_

~
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¢

se Ag(w-x,h~1(y)) as loss of w on (x,y)
Called matching loss for h

Matching loss is convex in w

transfer f. H(z) match. loss
h(z) dg(w -2, h ™ (y)
1 2
5 %22 5(’11) "L = y)
square loss
In(l+e%®) —yw-x
lfez In(14+¢e*) | 4+ylny+ (1 —y)n(l —y)
logistic loss
. max{0, —yw - &}
sign(z) ||
hinge loss

-

78

f Sigmoid in the Limit'

For transfer function h(z) = sign(z)

H(z) = || J

Matching loss is hinge loss
HL(w -z, h " (y)) = max{0, —yw - =}

0
Qonvex in w but not differentiable

yw-x, y==x1

80



K Motivation of linear threshold algs'

Gradient descent

with Perceptron
Hinge Loss
Expon. gradient Normalized
with Winnow

Hinge Loss

Known linear threshold algorithms for +1-classification case are
Qradient-based algorithms with hinge loss

~

Wi41

= argmin (||w — wil[*/2+ 7 HL(w 20,97 (1))

= w; — 7 (sign(wir1 - 1)) — Ye) T

~ wy — 1 (sign(wy - @) —yi) x4

Yt

/
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Normalized Winnow '

W1

Wt,4

n
= argmin (Z w; In Wiy nHL(w - wt,g_l(yt))>
w i=1

=w ;e (sign(W-T1)—yr) 1.

/ normalization
—n (sign(wy - @) —y) wes
—_———

R Wi € ot / normalization

~

-

J
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Trade-off between two divergences I

Wiy = 3Tg£ﬁn( Ap(w,wy) + 17 Ag(w -z, h ™ (yy))

parameter matching

divergence loss divergence

Both divergences are convex in w

wipy = 71 (f(we) — ni(h(we - @) — yo)y)

Generalization of the “delta”-rule

83

-

~
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g

Special case:
Ir,bi}n Ap(w,we) + A (- w, h™ (ye))

= —min
o

General:
min Ap(w + p, 1)) + Ap(Xw + v, b~ (y))
w N——
w;q
= —min

(e

where F' and F are convex conjugate functions:

\_

F(x) = SUp@ -y - Fy)=a- (VF) ' (z) - F(VF)}(z))

/

85
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Relation to Boosting'

The AdaBoost update of the probability vector w;:
wi™ = wl" exp(—auyihi (@)

Is a projection w.r.t. divergence

AF(w,wt) = Zwi In

W;
Wt,5

Such that the weighted training error of hy w.r.t. w**b is

— ol

(“diversification” of Boosting mentioned in Ron Meir’s talk

\_

~

87

/ Projections onto Hyperplanes' \

Wil = arg;}nin(AF(w,wt) +n(w -z — y)?)
When 7 is large then w;; is projection of w; onto plane w-x; = y;

Wiy = argmin

AF(’UJ, wt)
{Ww: W, Ti=y:}

Bregman projection

Euclidean projection .. "

k / \ hyperplane H = {w - ; = y;} j
86

4 A

wi(o) = w; exp(—ay;he(x;)) a= argminz w;(a)

L7 \ hyperplane

H = {Zl yihi(z:)w; = 0}

88



projection onto H(®)
hyperplane H' @

w©®

»'”"b‘rojcction onto H®) i intersection HW N H2)

hyperplane H(zi)’*.‘ :

/
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Exponential Family of Distributions'

Parametric density functions

P (x|0) = =40 py(x)

0 and x vectors in R®

Cumulant function G(0) assures normalization
G(0)=1n /eOw Py(x) dx
e ((0) is convex function on convex set @ C RY

e (G characterizes members of the family

e 0 is natural parameter

~

91

/Bregman divergences and exponential families? \I

e Exponential family of distributions

e Inherent duality

wipr = [ (f(wi) — nV L (wy))

primal param. dual param.

wy 7, fwy)
k W1 (i —T]VLt ('LUf) j
90

4 N

e Expectation parameter
b= /m 2Pg(@|6)dz = Eg(x) = g(0)
where g(8) = VgG(0)
e Second convex function F'(u) on space g(@)
F(p) = 0 -p—G(0)
e (G(0) and F(u) are convex conjugate functions

o Let f(pn) = VuF(p)
o f(w) =g (w)

N J
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Primal & Dual Parameters'

natural expectation
paramater parameter
SN
(7] — n
f
G(0) F(p)

e 0 and p are dual parameters

e Parameter transformations
9(6) = p and f(p) =6

\_

~
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g

Examples z; are coin flips in {0,1}
P(zlp) = p*(1—w)'™"
w is the probability (expectation) of 1

Natural parameter: § = In ﬁ

P(z]0) = exp (9.7: —In(1+ ee))

Cumulant function: G(6) = In(1 + ¢”)

Parameter transformations:

0

and@zf(u):lnlfu

e
n=90)= 11
Dual function: F(u) = plnp+ (1 — p)In(l — u)

Log loss: Li(8) = —z0+In(1+¢%)

K = —zilnp—(1—x¢)In(l —p)

95

-

Gaussian (unit Variance)I

P(z6) ~ e 3027
_ Hx-10° ix?

Cumulant function: G(0) = %02

Parameter transformations:

9(0)=0=p and f(p)=p=2=0

Dual convex function: F(p) = 0-p— G(0)
1,2
2

I
Square loss: Ly(6) = (8, — x)?

-

94

f Poisson

Examples z; are natural numbers in {0,1,...}

T

e
Plalu) = &

1 is expectation of z
Natural parameter: § =Inp

1
_ 0
P(z]0) = exp (91‘ —e ) =
Cumulant function: G(6) = e’

Parameter transformations:
p=g0)=e"and 0 = f(n) =Inp

Dual function: F(u) = plop — p

Loss: Li(0) = —xz0+ e +1nxz!
K = —z;lnp+p+Inz!
96



Bregman Div. as Rel. Ent. between Distributions\l

Let P(x|0) and P(z|0) denote two distributions with cumulant
function G

Ac(8,0) - /m Po(z|6)m Le@10)

—dx
P (x]0)

- LfMmemfG@few+G@Mh

- G(B) = G(6) ~ (0~ 0) (| Pi(wip)ada)
= G6)-GO)—(0-0)-p

F(p)=0-p1-G(8) F(p)—F(p) = (p—R)-0

= AF()U’v ﬁ’)

N /
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AG(0,0) = G(0)-C(0)-(0-0)-9(0)

- é(%ﬂ—mm»m

= Flp)—=Fp) = (p—p)- f(p)

= Ap(p,p)

99

/ Area unchanged When Slide Flipped'

D

=

-

~

J
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f Dual divergence for Bernoulli'

GO)=In(1+e)  F(u)=phnp+ (1 —p)nl —p)

6

g(@):lij:,u

f(:u) =1In 1£LM =0
_

Ac(8,0) =In(1+e’) —In(1+¢’) — (6 — 0

- 1-—
Aﬂ%m:um%+u—mml L

Binary relative entropy

Sum of binary relative entropies is parameter divergence

Q)r BEG

~

/
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K Dual divergence for Poisson'

G(0) = ¢’ F(p)=plnp—p

Ap(p, u)—uln +h—p

Unnormalized relative entropy

Sum of unnormalized relative entropies is parameter for
KUEG (e.g. Winnow)

~

/
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Example: Gaussian density estimation'

~

X .0
Off-line versus on-line
e Loss on example x;
1
Lt(e) =—1In P(:ct|9) = i(wt — 0)2
103

/ Dual matching loss for sigmoid transfer func. I\

H(z)=In(1+e*) K(@)=rlnr+1—-r)In(1-7r)
h(z) = =r E(r)=In— =2

1—r

lj-ez
K dual to H and k = h~!
Ap(w-z,h™(y))
=In(14+e%?) —yw-z+ylny+ (1 —y)In(l —y)
By duality logistic loss is same as entropic loss

A (y, h(w - x))

Y l-y
=yln——+(1—-y)ln ———
ynh(w~m)+( y)nlfh(wa:)
Q/Iatching loss for logistic transfer function j
102

f Derivation of Updates' \

e Want to bound

ZLt Ch)

e Off-line algorithm has all T' examples

1nf Ly 7(0)

{wla L2,y .-+, mT}
e Setup for choosing best parameter setting
0p = argénin(ngl Ac(0,6,) + Ly 7(0))
divergence total

to initial loss

K Here 15" > 0 is a tradeoff parameter j

104




K On-line Algorithm I \

e In trial ¢, the first ¢ examples

{x1,22,..., 2}
have been presented

e Motivation for on-line parameter update:
do as well as best off-line algorithm up to trial ¢

e At end of trial ¢ algorithm minimizes

6;,1 = argmin (771_1 Ac(0,01) + Li.+(0))

divergence loss
to initial so far
K Tradeoft parameter n; 1 >0 J
105

4 )

e On-line algorithm has freedom to use a tradeoff parameter n; 1
that could be different from the off-line parameter ngl
e Two choices for n; "
Case nfl = 77];1:
Incremental Off-Line Algorithm
Case 771_1 = ngl + 1
Forward Algorithm

107

(s

Iternate Motivation of Same On-Line Update

0,1 = argmin(n; ! Aqg(0,6;) + L(0)

divergence to last current loss

1
S
m o t+t—1

Parameter Updates

where n =

— T
_ 77311‘1 + thl Lt

)

~

J

Off-line: I
b ' +7T
—1 t
B+ X
On-Line in trial £: p,,, = M 1_1Zq =y — i (py — @)
N+t
01 = g " (9(6:) — mega(pey — ¢))
106

-

Shrinkage Towards Initial

pp =Tr —ng (n5' + 1) (Tr — py)

T
Zt:l Ty

where T = =

Shrinkage factor 5" (ng" + 7)™

-

~
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) Forward
Off-line
on-line
Ganss _sLm s,
1 rp = T Ky = t—1+41
ny=0,n5" =0
Bernoulli T, iy,
_ Kp = =7 My = 77
1 1 +
=315 =0
109
/ Main Theorem '
For any sequence of examples and any 8 € @
S Li6) —  Lix(6)
total loss of total loss of
algorithm comparator 6
= m' Ac(6,61) — iy Ac(8,60741)
divergence divergence
to initial par. to last par.

+ Zthl 77;+11AG(9t79z+1)
cost of all

updates

Qroven by simply summing the Key Lemma

/ Key Lemma I \

For any example x; and any 6 € @

L:(6:) — L:(0)
loss of loss of
algorithm comparator 6
= ' Ac(6,0) — ni Ac(9,8:41)
divergence divergence
to last par. to updated par.

+ 1hAG(0r,0:41)

cost of

update

/

110

f Bounds for the Forward Algorithm' \

T T T—1
S0~ gt Lr(0) B S i Y a2
t=1 t=1 t=1

2
X—ln(l—!— _lT
2 n —1

IN

)

Bern<0ulli 1 nmw

lin. regr. 2
< %Yinn (1 X )

111

-1
t t—1
2 T 2 T /
X? =max;_; ¢, Y = max;—; Y, Wi = (aI + > wqmq> > xqyq
q=1 q=1

/
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Why Bregman divergences?'

e No need to check whether there is an underlying exponential
family

e More general than exponential families

e As parameter divergence and matching loss

e Used in motivation and analysis of updates

e When n — oo, updates morph into Bregman projection

e Generalized Pythagorean Theorem for Bregman projections

\_

~

/
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Minimax Algorithm for T Trials'

Learner against adversary

inf sup inf sup inf sup inf sup
By My oz, M3 oy Hr xp
T . T
thl %(/’l’t - iL't)z - mfﬂ thl %(H - wt)2
total loss of total loss of
on-line off-line
algorithm algorithm

Instances must be bounded: ||z:||s < X

Minimax algorithm usually intractable

Caussian and Bernoulli are exceptions

~

115

General setup of on-line learning'

e We hide some information from the learner

e The relative loss bound quantifies the price for hiding the

information

e So far the future examples are hidden
Off-line algorithm knows all examples

On-line algorithm knows past examples

-

f Gaussian

Forward Alg. w, = Sim1 T
Bound %XQ(l +1nT)

iz
Minimax Alg. = t+l“T*1Llll:(;+Oq(lnT))
Bound %X2(ln T—InlnT) 4+ o(1)

Minimax alg. needs to know T

-
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Last-step Minimax I

Assumes that current trial is last trial

t
n, = ar%nf sup ZLq<Nq)_iﬁfL1..t(li)

z,

= arginf sup L;(p;) —inf Ly _¢(p)
[T X K

For Gaussian and linear regression
Last-step Minimax is same as Forward Alg.

\_
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Synopsis of methods'

Game theoretic
e Slightly better bounds
e Harder to find
Bregman divergences

e Closer to Bayes and standard convex optimization

\_

-

Last-step Minimax: Bernoulli'

Forward alg:

S—i—l t—1
By = ﬁ, where s = ;xq

Last-step:

B (s+Ds+1)(t—s— 1)1
B = st sy 1 (s 1)5H(t — 5 — 1)i—s—1

Worst-case regret bounds: In(T'+ 1) + ¢

Forward: ¢ = ™  Last step: ¢ =

1
2 2

-
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K Content of this tutorial'

e P I: Introduction to Online Learning

— The Learning setting

— Predicting as good as the best expert

— Predicting as good as the best linear combination of experts
e P II: Bregman divergences and Loss bounds

— Introduction to Bregman divergences

— Relative loss bounds for the linear case

— Nonlinear case & matching losses

— Duality and relation to exponential families

— On-line algorithms motivated by game theory
e P III: on-line to batch conversion, applications

— Simple conversions

— Caching and the disk spin down problem

— Other applications and conclusion

119

Qoal: How can we prove relative loss bounds?

120



Simple conversions I

Worst case loss bounds for on-line algs
are converted to

algorithms with good performance bounds in the i.i.d. case
e Expected loss bounds

e Tail bounds

\_

Expected loss bounds I

Loss function L : R?> - R
S = ($17y1)7"'7(mT7yT) ~ DT

Instantaneous loss of hypothesis h w.r.t. distribution D

InstLoss(h, D) = Ecp L(h,e)

/

/ Eg.pr(TotLoss(A4,S))
T
= E(e,,....er)~DT <ZL(A((€17---,et—l)%@t))

t=1

T
= Z Ete,..eoo)~nt-1 (Benun (L(A((e1, .-, e4-1)),€)))

T
> Eler,eryopi-t (InstLoss(A(er, ..., e,-1), D))
t=1

So expected total loss is total instaneous loss

12 w T+l
Run
A

W

k Pick one at random

‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘ T+1 hyp’s

~

-

-

Choose h; uniformly at random from the 7"+ 1 hypotheses

e On new instance @ predict with h;(x)

Instanteneous loss of this algorithm is expected total loss of
original algorithm over T+ 1

Applied to the Perceptron Algorithm

/

123
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K Tail bound I

Convex Loss L : R? — [0, Lax]

12 w  T+1
Run
A

W

_ 1 &
h(z) = T Z he(x)

If total worst case loss is M, then with probability 1 — ¢

— M 2 1
errp(h) < T + Lmaxt/ T logg

\_

‘x‘x‘x‘x‘x‘x‘x‘X‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘ T+1 hyp’s

~

o
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Application: Caching I

e Whenever small, fast memory
and larger, slower secondary memory

e Keep objects in fast memory
which are likely to be needed again soon
— Hit if requested object resides in cache

— Miss Otherwise

\_
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Application: Adaptive Channel Equalization'

- Online Linear Regression Problem:
= Find w such that (y — w - x)

2 is minimized
- Common approach:

Wiy = wp — (Y — Wy - T4)Ty

- But: Many coefficients are zero, or close to zero
= Use Unnormalized Exponentiated Gradient update or the
approximate version

wip1 = wy (1 —n(y — wy - x¢)ws)

N J

126

4 ™
Caching Policies I

e Decides which objects to discard

to make room for new requests

e 7 common policies: LRU, RAND, FIFO, LIFO, LFU and MFU

5 fancy recent policies: SIZE, GDS, GD*, GDSF, LFUDA
e Criteria:

— Recency and frequency of access

— Size of objects

— Cost of fetching object from secondary memory

e De facto standard: LRU

N J
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e For which situation?
— Disk access on PC
— Web proxy access via browser
— File server on local network

Middle of the night -

during backup
— Application as well as time dependent

e Choosing one is suboptimal

Which Policy to Choose?'

ia T T T T T T

g r gds
gdsf

& ad

4 - — — — —

E_

a I 1 L I I I

2asaea cleapa 215a88 == lats]a] 225apa c3papa

235a88

-

Characteristics Vary with Time'

lru
mEu
mfu
rand
gds
gost
oo

I
2asesa Zloaaa 215888 Zeaaae 225ese 22Eaee 23seaa

~

130
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Randomly Permuted Request Stream'

Zaseea 21eaaa 215a88 == lats]a] 225eee === ]u]z] 235eaa

/
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Want “Adaptive” Policy'

e Good compared to off-line comparator
— BestFixed: a posteriori best of 12 policies on entire
request stream
— BestRefetching(R):
minimum number of misses with at most R refetches

in any sequence of switching policies

133

BestRefetching(R) I

BF=SZE

-+ BesiFixed =SIZE
= BestRefetching(R)
AllVirual Caches

Missrates %

Refetches as% of Totel Requests

Dynamic programming in time O(RN?2T)

-

/ Refetches & Policy Switchesl

Off-line comparator: All sequences of the form
GDSF LFUDA SIZE GDSF

| |
\A A A

1(t1) (12) 1(t3)

We plot miss rate v.s. refetches:

/ Point represening sequence

Total # of misses

k Tortal # of referches

134

Goal for On-line policies'

e Beat BestFixed
e Get close to BestRefetching

e Reduce I/O’s and end-user latency

-




Score Card '

B C
) o Beathed

miss -+ refetch <= LRU miss

A =Total 'Os less than BestFixed
B = Twmal I'Os less than LRU
C = Twal VO more than LRU

+ = Better than BestRetetching
= Worse than BestFixed

Miss Rate (%)

miss + refetch <= BestFixed miss

BestReferching

0% Refetches as % of Total Requests

\_

Virtual Caches I

| Size(full cache)

Fixed Policy, e.g. LRU
(with object data)

12 Virtual Caches
(withour object data)

Real Cache D
(with object data)

P —
. - Sum(Size(VC.
Size(real cache) um(Size(VED)

/

Key Idea: Virtual Caches'

Simulates a cache for each baseline policy

Per object keep only (ID, size and calculated priority)

Maintenance cost negligible

e Observe current miss rates of all 12

Virtual Caches reside in the total cache space:

12
Size(real cache) = Size(full cache) — Z Size(VC;).
i=1

J
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Window Algorithm I

e Real cache governed by currently best policy

e Best means lowest number of hits in window of W (say 300)
requests

e Works reasonably well - but
— Hard to tune the window size

— O(NW) Additional space required for N policies.

~
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Better Master Policy'

Use Expert Framework from On-line learning

Maintain one weight w; for each base policy / expert

w; is estimate of current relative performance of policy ¢

Weights updated after each request:

— Loss update punishes policies quickly that score misses

— Share update [LW94 HW98 BWO01]

Keeps weights of poor policies from becoming too small

Helps recovery

/
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FSUFP Height

Height History for Individual Policies

f Weights of baseline policies under FSUPI \

T
i+ lru ———
ney —
8.8 H
mfu ———
rand ———
gz ———
|d.6 H godsf —
gd ——
B.4 H
i
a.2 H
L
a - —_— - - - - - —
1 1 1 1 1 1 1
caseea Z1l@aeg =R R=1:1c]c] f=g=4ula]u]c] =44t 1)) f=gclclaluls] £2coea

Regquests Ouer Time t

143

/ Fixed Share to Uniform Past.

Loss Update:

’U}t,i,ﬁ mlSSM

= 0,1
Wi normaliz. ’ pe(0.1)

Share Update:

w1 =(1—a)wi+ar,,
t—1

where r;_1 = Zw;/(t -1)

g=1

K Helps when these weights need to recover

e Prevents weights that did well in past from becoming too small

~

J
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Digression

More on On-line Learning
and Share Updates

~
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On-line Learning I

experts
predic true
E, Ey FE3 FE, | tion label loss
day 1 1 1 0 0 0 1 1
day 2 1 0 1 0 1 0 1
day 3 0 1 1 1 1 1 0
dayt x:1 T2 Tes Ten | Ut Yt (ye — O1)?

e Choose comparison class of predictors (experts)
e Master Algorithm combines predictions of experts

e x; vector of expert’s predictions

N /
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f What kind of performance can we expect ?I \

- L1 7 4 be the total loss of algorithm A

- L1 7,; be the total loss of i-th expert E;

Form of bounds

VS : Lle7A4 S min L]_“T)/Ij +c IOg’I’L
i ——
bits
where c is constant

e Bounds the loss of the algorithm relative to the loss of best

K expert J

147
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Protocol of Master Algorithm'

Loop for each trial t = 1,..,T
Get next instance x;
Make prediction Ut
Get label y¢ (“true outcome”)
Incur loss L(§e,yt)

e No statistical assumptions on the data

Goal

N

e Do well compared to the best off-line comparator / best expert

J

146

K Algorithm that Achieves Bound'

e Master algorithm predicts with weighted average
Ut = Wi - Xt

e The weights are updated according to the Loss Update

o Ly

L wt;i e ot -n _ /3

Wiy, = ————, € 1=
normaliz.

where Ly ; is loss of expert ¢ in trial ¢

— Weighted Majority Algorithm

K—> Generalized by Vovk

~

[LW89]

[V()\'k,()y
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What if Comparator Changes with Time ?I

| — | |
Expert 7 20 4 51

e Off-line algorithm partitions sequence into sections
and chooses best expert in each section

o Goal:
Do well compared to the best off-line partition

e Problem:
Loss Update learns too well

and does not recover fast enough

~
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Total Loss Plots.
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30 | e ]
ﬁ e
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or /// — 1
0
1 2 1 2 3 1 2

Best Expert

e T = 1400 trials, n = 20000 experts

e k = 6 shifts (every 200 trials)

\_
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/ Mixing Update I

e Predict 4; = w; - x4

—nLy ;
we,ie t,i

e Loss Update waz‘ ~ normaliz.

e Mixing Update
t t
Wil = Z Bit1,4Wy,  Where Z/@tﬂ =1
q=0 q=0

e Mixing schemes

a/t
T
01 2 - t-1

FS to Uniform Past FS to Decaying Past

k FS to Start Vector

150
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Weights of Fixed Share to Start Vector Alg.'

09 F
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07 F |
0.6 F |
05 F |

Weight
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03 | |
02
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0

1 2 1 2 3 1 2
Best Expert
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Weights of Fixed Share to Decaying Past Alg. I\

e Improved recovery when expert used before

Weight
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Total Loss
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More Experts Remembered'

T T T T T T
Typical Expert
Static

B FS Start T
FS Decaying Past

1

~ =

—
—

1 — |

123456789101 2345¢67891012345¢678910
Best Expert

e T = 6000 trials, n = 20000 experts

o k = 29 shifts (every 200 trials)

\_

e Past good experts remain at higher level

0 —

2 F 0 \ e

Log Weight

& ] % | A —
1 2 1 2 3 1 2
Best Expert

e 3

K Fixed Share to Decaying Past - Log Weights'

J

J

e Past good expert are cached

0 - YR

Log Weight

! I T T T T A O W W

123456789101 2345678 910123456728 910
Best Expert

10
Max others

LI —

K Fixed Share to Decaying Past - Log Weights'




Fixed Share to Start Vector - Log Weights'

e No memory

0 [ & ™
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Log Weight
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=
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Best Expert

2

Typical

In(alpha/n)
1

e Larger alpha gives better long-term memory

\_

Relative Loss Bounds'

e Always have the form

Li.74 < Ingn (L1.7.p + O(# of bits for P))

— Boundaries are encoded twice

— Off-line problem NP-complete

N

J
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Fixed Share to Start Vector - Log Weights'
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~
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Memory from many short sections accumulates'

e Fixed Share to Decaying Past - Log Weights

0

2+ 4

-10 ,
20 1
o i
[N m \ i \ \
. T )\ i J i \ 3

1 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
Best Expert

Log Weight

2

In(alpha/n)
1 Typical
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Back to Caching'

e Share-update crucial
e Fixed Share to Uniform Past cheap one of the best

e Bounds do not apply but we are using recovery properties
— parameter settings (a, 8 or 1) not crucial

— fix at

B=1/e «=0.005
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Bigger memory I

e Cycling thru 10 different short sections

T

oo

U\ M | \“

. h‘ k I | \ il /
’ f\ LR i ub
H\v il wk i

Log Weight

11 MJ:W

g

1600 3200 4800 6400 8000 9600 11200 12800 14400 16000 17600 19200 20800
Trial
1 — 7T — Max others
2 — 8
3 6 — 9
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Master Policy Protocol'

e Process request on virtual caches

Apply Loss and Share Updates

Process request on real cache

— based on combined weightings of all caches

Refetch objects into real cache (if desired)
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Virtual Cache Rankings'

e Priorities induce ranks over virtually cached objects:

’ object H 012 ‘ o7 ‘ 09 ‘ 099 ‘ 03 ‘ 06 ‘ 09 ‘ 015
priority || 31.2 | 30.2 | 24.1 | 17.1 | 93 | 8 | 4.1 | 25| 1.2
rank 9 8 7 6 5 4 3 2 1

® 0y first discarded

® 019 last

N /
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Ideal Cache I

e Highest ranked objects fill the ideal cache to capacity

e IdealCache =

Objects ranked by R

RI0 R9 RE R7 (101 &1 Y R4 3 R2 Rl

oll ol ob ol ol ol o3 of ol7 ol2

IdealCache

4 ™
Master Rank I

e Master priority P constructed from

weights and ranks of virtual caches

Z WpTy o if In:0e€ VC,
1)0 = Nn:0EVCy

0 if Vn:0¢VC,

e 17 is corresponding master rank

N J
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Managing Real Cache: Instantaneous Rollover'

e Keep RealCache = Ideal Cache
i.e. Refetch all o € IdealCache — RealCache

e Too much refetching

N J
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Demand Rollover I

e Lowest R-ranked objects are discarded

to make room for a new request

o No refetching

169
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Fraquancy

40000 80000

=]

Smart Refetching I

Wk

00 02 04 06 08 10

MNormalized Rank

Frequency

O 40000 100000

UMo

00 02 04 0B 08 10

Normalized Rank

Fraquency

e Most hits in real cache have high R-rank
e Refetch only top 40-60% of R-ranked objects

\_

5000

O 1000 2000

SMoLRU

00 02 04 0B 08 10

Nermalized Rank

Compromise: Background Rollover'

e Refetch objects
o € IdealCache — RealCache
when system is idle
e Model idleness as Poisson process
— Draw d ~ Pois()\)
— Refetch (at most) d objects o € IdealCache — RealCache

N

J

170

-

Experimental Results: Filesystem Data'

Dataset: Work-Week User-Month Server-Month-LRU
(WWk) (UMo) (SMoLRU)
#Requests 138k 382k 48k
Cache size 900KB 2MB 4MB
%Skipped 6.5% 12.8% 15.7%
# Compuls 0.020 0.015 0.152
LRU Miss Rate 0.166 0.076 0.870
BestFixed Pol / MR SIZE 0.055 GDS 0.075 GDSF 0.399
% <LRU 36.8% 54.7% 54.2%

CMU DF'Strace

/
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Miss-rates

Demand Rollover “Tracks” best policy'

Miss-rates under FSUP with Master
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Requests Over Time t

~

/
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Missrates %

UMo

UMo Master and Comparator Missrates

16.6% = LRU missrate
1.5% = Obligatory missrate

— BestRefetching(R)

- - RankIdeal

---- Rank 80% Ideal

-—- Rank 40% Ideal

— — BestFied = G03
AV

Refetches as % of Total Requests

~

Iissrates %

5.0

45

WWk

WWk Master and Comparator Missrates

8.5% = LRI missrate
2.0% = Obligatory missrate

—— BestRefetching(R)
Rank Ideal

Rank 0% Ideal
Rank 40% Ideal

— BesiFixed = SIZE
AV

] 20 a0 40

Refetches as % of Total Requests
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Missrates %

SMoLRU Master and Comparator Missrates

50 8% = LRU missrate
15.3% = Obligatory missrate

—— BestRefetching(R)

- - RankIdeal

<+ Rank 60% Ideal

+=+  Rank 40% Ideal

— — BestFixed = SIZE
AlVC

Refetches as % of Total Requests
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e Demand Rollover is already as good or better than BestFixed

e Small amounts of refetching always beats Best Fixed
— 15-22% fewer misses than BestFixed
— 45-70% fewer misses than LRU

e Can be as good as BestRefetching
— always less I/O’s than LRU
— can result in less I/O than BestFixed

N /
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Too expensive? I

e Not for web caching and filesystem’s caching
e Not clear for paging

e Implement in Linux kernel

N J

-

N

Conclusion

e Operating Systems have many parameter tweaking problems
suitable for on-line learning

e Previous work using same updates:
[HLSSO00]
[BBY7]

— Tuning time-out for spinning down disk of a PC
— Load balancing between processors

— Tracking with GPS

J
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Two approaches I

e Use existing caching strategies as experts

e Use set of fine-grained experts
from which all existing caching policies are built

e Machine Learners will get interested if there are realistic
benchmark data sets
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Application: Disk Spin Down I

Problem of adapt. spinning down hard disks in mobile computers

Common approach

e Fixed time-out (e.g. 2 min)

e Does not exploit changing usage patterns

\_

-

e Use about 20 experts with different time-outs
e Apply shifting expert algorithm with mixing to decaying past

e Efficient but proofs don’t apply because on unusual loss
function

\_

Period (1e8 sec.)
100
Il

0e+00 2e+07 4e+07 6e+07 8e+07

Time (sec.)

1e+08
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Which loss? '

Costs for spinning up/down, running machine in idle mode, ...

L(“idle-time”, “time-out”) ~ total energy consumed

184




K Does it work?' \ /
Other Applications I
Comparators:

e Best fixed idle time chosen in hindsight

Calendar managing
e Optimal algorithm: Spin down if cost of next idle period Many features (sleeping experts)

> spin down cost

Text categorization

Performance One attribute per word in text

e Better than best fixed

Spelling correction

e Close to optimal

Portfolio prediction
e Parameters easy to tune and algorithm very stable over a large

. Boosting
variety of data

) e Load Balancing based on shifting expert algorithms
e Better than other algorithms that provable have good

K competitve ratios J k
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