
�

�

�

�

Online Learning and Bregman Divergences

Tutorial at Machine Learning Summer School

Taipei, Taiwan, July 2006

Manfred K. Warmuth

University of California at Santa Cruz, USA

http://www.cse.ucsc.edu/~manfred

Help with the tutorial: Gunnar Rätsch

1

�

�

�

�

Content of this tutorial

• P I: Introduction to Online Learning

– The Learning setting

– Predicting as good as the best expert

– Predicting as good as the best linear combination of experts

• P II: Bregman divergences and Loss bounds

– Introduction to Bregman divergences

– Relative loss bounds for the linear case

– Nonlinear case & matching losses

– Duality and relation to exponential families

– On-line algorithms motivated by game theory

• P III: on-line to batch conversion, applications

– Simple conversions

– Caching and the disk spin down problem

– Other applications and conclusion

Goal: How can we prove relative loss bounds?

2�

�

�

�

Sources of Information

• 07/27/2006 06:39 AM10511170.jpg 453�648 pixels

Page 1 of 1http://a1204.g.akamai.net/7/1204/1401/05121514011/images.barnesandnoble.com/images/10510000/10511170.jpg

Emphasizes ”potentials” - Here ”Bregman Divergences”

• JMLR, JML, COLT, NIPS, ICML

3

�

�

�

�

Predicting almost as good as the best expert

E1 E2 E3 · · · En

predic

tion
true

label loss

day 1 1 1 0 · · · 0 0 1 1

day 2 1 0 1 · · · 0 1 0 1

day 3 0 1 1 · · · 1 1 1 0

day t xt,1 xt,2 xt,3 · · · xt,n ŷt yt |yt − ŷt|
Master Algorithm

For t = 1 To T Do
Get instance xt ∈ {0, 1}n

Predict ŷt ∈ {0, 1}
Get label yt ∈ {0, 1}
Incur loss |yt − ŷt|

4

�

�

�

�

More general online settings

Protocol:

For t = 1 To T Do
Get instance xt ∈ Rn

Predict ŷt ∈ Y
Get label yt ∈ Y
Incur loss L(yt, ŷt, xt)

Problem instances:

• Classification: ŷt, yt ∈ {0, 1}, e.g. L(y, ŷ, x) = |y − ŷ|
• Regression: ŷt, yt ∈ R, e.g. L(y, ŷ, x) = (y − ŷ)2

• Density estimation: no label, e.g. L(y, ŷ, x) = − log P (x|θ)

Goal: small total loss
∑

t L(yt, ŷt, xt)

5

�

�

�

�

Expert setting: Halving Algorithm [BF]

predictpredict
0 1

experts
inconsistent

consistent
experts

experts
all

• Predicts with majority

• If mistake is made, then number of consistent experts is (at
least) halved

• any mistake is “converted” into knowledge on the learning
problem: mistake driven learning

6�

�

�

�

A run of the Halving Algorithm

E1 E2 E3 E4 E5 E6 E7 E8

majo

rity
true

label loss

1 1 0 0 1 1 0 0 1 0 1

x x 0 1 x x 1 1 1 1 0

x x x 1 x x 0 0 0 1 1

x x x ↑ x x x x

consistent

For any sequence with a consistent expert
Halving Algorithm makes at most ≤ log2 n mistakes

(Good bound, but not optimal)

7

�

�

�

�

What if no expert is consistent?

Sequence of examples S = (x1, y1), . . . , (xT , yT)

• total loss of algorithm A: LA(S) =
T∑

t=1

L(A(xt), yt)

• total loss of i-th expert Ei: Li(S) =
T∑

t=1

L(Ei(xt), yt)

Want bounds of the form:

∀S : LA(S) ≤ a min
i

Li(S) + b log(n)

where a, b are constants

Bounds loss of algorithm relative to loss of best expert

8

�

�

�

�

Weighted Majority Algorithm [LW]

One weight per expert
Can’t wipe out experts!

their weight

all
experts

predict
 0 predict

 1

vote with

• Predicts with larger side

• Weights of wrong experts are multiplied by β ∈ [0, 1)

9

�

�

�

�

Number of mistakes of the WM algorithm

Mt,i = # of mistakes of Ei before trial t

wt,i = βMt,i weight of Ei at beginning of trial t

Wt =
n∑

i=1

wt,i total weight at trial t

Minority ≤ 1
2Wt, Majority ≥ 1

2Wt

If no mistake then minority multiplied by β:
Wt+1 ≤ 1 Wt

If mistake then majority multiplied by β:

Wt+1 ≤ 1 1
2Wt

minority

+ β 1
2Wt

majority

=
1 + β

2
Wt

10�

�

�

�

M = Total number of mistakes of WM
Mi = Total number of mistakes of expert Ei

Hence

WT+1

total final

weight

≤
(

1 + β

2

)M

W1

WT+1 =
n∑

j=1

wT+1,j =
n∑

j=1

βMT+1,j ≥ βMT+1,i

where i = argminj MT+1,j

We got: (
1 + β

2

)M

W1︸︷︷︸
n

≥ βMi

11

�

�

�

�

Relative Loss bound for Weighted Majority

Solving for M :

M ≤
ln 1

β

ln 2
1+β

Mi +
1

ln 2
1+β

lnn

M ≤
β = 1/e

2.63︸︷︷︸
a

min
i

Mi + 2.63︸︷︷︸
b

lnn

For all sequences, loss of master algorithm
is comparable to loss of best expert
⇒ Relative loss bounds [Fr]

12

�

�

�

�

Other Loss Functions

absolute loss L(y, ŷ) = |y − ŷ|

square loss L(y, ŷ) = (y − ŷ)2

entropic loss L(y, ŷ) = y ln y
ŷ

+ (1 − y) ln 1−y
1−ŷ

,

y, ŷ ∈ [0, 1]

entropic loss ± L(y, ŷ) = 1+y
2

ln 1+y
1+ŷ

+ 1−y
2

ln 1−y
1−ŷ

,

y, ŷ ∈ [−1, +1]

hellinger loss L(y, ŷ) = 1
2

`√
1 − y −√

1 − ŷ
´2

+ 1
2

`√
y −√

ŷ
´2

y, ŷ ∈ [0, 1]

13

�

�

�

�

How does it work with other loss functions?

One weight per expert: [V]

wt,i = β Lt,i = e−η Lt,i

where Lt,i is total loss of Ei before trial t

and η is a positive learning rate

Master predicts with the weighted average (WA) [KW]

vt,i =
wt,i∑n
i=1 wt,i

normalized weights

ŷt =
n∑

i=1

vt,i xt,i = vt · xt

where xt,i is the prediction of Ei in trial t

14�

�

�

�

Bounds for other Loss Functions

∀ sequences S of examples 〈(xt, yt)〉1≤t≤T

where xt ∈ [0, 1]n and yt ∈ [0, 1]

LWA(S) ≤ min
i

1︸︷︷︸
a

Li(S) + 1/η︸︷︷︸
b

ln(n)

LWA(S) − min
i

Li(S)︸ ︷︷ ︸
regret

≤ b ln(n)

15

�

�

�

�

Worst-case regret bounds

b WA fancy

entropic 1 1

square 2 1/2

hellinger 1 .71

• Improved constants of b = 1/η when Master uses fancier pred.
[V]

• For the discrete loss and the absolute loss: a > 1

16

�

�

�

�

Proof

Potential: − 1
η lnWt

Key inequality: L(y, vt · xt) ≤

new potential︷ ︸︸ ︷
−1

η
lnWt+1 −

old potential︷ ︸︸ ︷
(−1

η
lnWt)

= −1
η

ln
Wt+1

Wt︸ ︷︷ ︸
drop of potential

17

�

�

�

�

Proof continued

Telescoping:

LWA(S) ≤ −1
η

ln
WT+1

W1

= −1
η

ln
n∑

j=1

1
n

e−ηLT+1,j(S)

≤ −1
η

ln
1
n

e−ηLi(S) i = argmin
j

LT+1,j

= −1
η

ln
1
n

e−ηLT+1,i(S)

= LT+1,i(S) +
1
η

lnn

18�

�

�

�

Usefulness:

• Easy to combine many pretty good experts
(algorithms) so that Master is guaranteed
to be almost as good as the best

• Bounds logarithmic in number of experts
(multiplicative updates)

19

�

�

�

�

Questions:

• How to obtain algorithms that do well compared to
best linear combination or
best thresholded linear combination of experts?

• How to motivate the updates?

• What are good measures of progress?

• What are good loss functions?

• Methods for proving relative loss bounds?

20

�

�

�

�

Example: Learning Disjunctions of Experts

variables/experts

E1 E2 E3 E4

true

label E1 ∨ E3 E3 ∨ E4

1 1 0 0 0 1 0

1 0 1 0 1 1 1

0 1 1 1 0 1 1

0 1 0 0 1 0 0

xt,1 xt,2 xt,3 xt,4 ↑ ↑
3 2

mistakes

E1 ∨ E3 becomes u = (1, 0, 1, 0)

E1 ∨ E3 is one on xt ∈ {0, 1}n iff u · xt ≥ 1

21

�

�

�

�

Weighted Majority on k-literal Disjunctions

One expert per disjunction(
n
k

)
weights

Do as well as best k out of n literal (monotone) disjunction

of mistakes
of WM ≤ 2.63 M + 2.63 k ln

n

k

M is # of mistakes of best

Time (and space) exponential in k

Efficient algorithm have only one weight per literal
instead of one weight per disjunction

22�

�

�

�

The Perceptron Algorithm

In trial t: Get instance xt ∈ {0, 1}n

If wt · xt ≥ θ then ŷt = 1

else ŷt = 0

Get label yt ∈ {0, 1}
If mistake then

wt+1 = wt − η (ŷt − yt) xt

Rotation invariant if w1 = (0, . . . , 0)

23

�

�

�

�

k-literal Disjunctions with Perceptron

Perceptron Convergence Theorem (w1 = (0, . . . , 0), θ = 1
2 , η = 1

2n)

of mistakes ≤ 4 A + 4 k n

where A is # of attribute errors of best disjunction of size k, i.e.,
the minimum # of attributes that need to be flipped to make the
disjunction consistent

A ≤ kM

Lower bound for rotation invariant algorithms: [KWA]

#mistakes = Ω(n)

24

�

�

�

�

The Winnow Algorithm [L]

In trial t: Get instance xt ∈ {0, 1}n

If wt · xt ≥ θ then ŷt = 1

else ŷt = 0

Get label yt ∈ {0, 1}
If mistake then

wt+1,i = wt,i e−η (ŷt−yt) xt,i

Mistake bound (w1 := k
n (1, . . . , 1), θ = 3 ln 3

8 n, e−η = 1
3) [AW]

of mistakes ≤ 4 A + 3.6 k ln
n

k

Not rotation invariant!

25

�

�

�

�

So far

• Learning relative to best expert for various loss functions

• Learning relative to best disjunction

• Perceptron versus Winnow and expansion into feature space

26�

�

�

�

On-line Linear Regression

For t = 1, . . . , T do

Get instance xt ∈ Rn

Predict ŷt = wt · xt

Get label yt ∈ R

Incur loss Lt(wt) = (yt − ŷt)
2

Update wt to wt+1

y

x

ŷt

xt

yt
⎫⎬⎭

wt

Assume comparison class {u} is a set of linear predictors

u : x → u · x

27

�

�

�

�

Examples of Updates

Gradient descent
(w ∈ Rn)

wt+1 = wt − η∇Lt(wt)

= wt − η(wt · xt − yt) xt [WH]

Exponentiated Gradient Algorithm [KW]
(w is probability vector)

wt+1,i = wt,i exp
[
−η

∂Lt(wt)
∂wt,i

]
/ normalization

28

�

�

�

�

More examples of Updates

Unnormalized Exponentiated Gradient Algorithm [KW]
(w ≥ 0)

wt+1,i = wt,i exp
[
−η

∂Lt(wt)
∂wt,i

]
Binary Exponentiated Gradient Algorithm [By]
(w ∈ [0, 1]n)

wt+1,i =
wt,i exp

[
−η ∂Nt(wt)

∂wt,i

]
1 − wt,i + wt,i exp

[
−η ∂Lt(wt)

∂wt,i

]

29

�

�

�

�

More examples of Updates (cont)

p-norm Algorithms [GLS,GL]
(w ∈ Rn)

wt+1 = f−1
(
f(wt) − η∇Lt(wt)

)
where

f(w) = ∇1
2
||w||2q = ∇1

2

(∑
i

|wi|q
)2/q

and q dual to p (i.e., 1
p + 1

q = 1)

• p = 2 becomes gradient descent

• p = O(log n) becomes EG-like algs

• 2 < p < O(log n) interpolates between the two extremes

30�

�

�

�

Motivation of Updates [KW]

Gradient descent

wt+1 = argmin
w

(||w − wt||22/2 + η(yt − w · xt)2/2
)

= wt − η(wt+1 · xt︸ ︷︷ ︸
≈wt·xt

−yt) xt

Exponentiated Gradient Algorithm

wt+1 = argmin
w

(
n∑

i=1

wi ln
wi

wt,i
+ η(yt − w · xt)2/2

)

= wt,i exp

⎡⎢⎣−η (wt+1 · xt︸ ︷︷ ︸
≈wt·xt

−yt) xt,i

⎤⎥⎦ / normalization

31

�

�

�

�

Families of update algorithms

parameter name of update

“divergence” family algorithms

||w − wt||22 Gradient Widrow Hoff (LMS)

Descent Linear Least Squares.

Backpropagation

Perceptron Algorithms

kernel based algorithms,...

Pn
i=1wiln

wi
wt,i

Exponentiated expert algs / Bayes update

Gradient Normalized Winnow

Algorithm “AdaBoost”

32

�

�

�

�

Families of update algorithms (cont)

parameter name of update

“divergence” family algorithmsPn
i=1wiln

wi
wt,i

+wt,i − wi

Unnormalized

Exp. Grad. Alg.

Winnow

Pn
i=1wiln

wi
wt,i

+(1 − wi) ln 1−wi
1−wt,i

Binary

Exp. Grad. Alg.

any - -

“Bregman divergence”

Members of different families exhibit different behavior
|| ||22 versus entropic regularization

33

�

�

�

�

Alternate motivation: continuous updates [WJ]

Continuous time ⇒ Ordinary differential equations

Gradient Descent
w ∈ Rn

•
wt= −η∇wLt(wt)

Unnormalized Exponentiated Gradient Alg.
w ≥ 0

•
log(wt)= −η∇wLt(wt)

34�

�

�

�

Alternate motivation: continuous updates (cont)

Discretization

f(wt+h) − f(wt)
h

= −η∇Lt(wt)

wt+h = f−1 (f(wt) − η h∇wLt(wt))

We use h = 1

wt+1 = f−1 (f(wt) − ηt∇Lt(wt))

Conjecture: Forward Euler better:
Replace ∇wLt(wt) by ∇wLt(wt+h)

35

�

�

�

�

Two main families

• Additive: w =
∑

t αtxt Multiplicative: wi ∼ exp(
∑

t αtxt,i)

|| ||22 entropic
Gradient descent Exponentiated Gradient
Rotation invariant ???

• We now give a problem that favors the multiplicative updates

Linear versus logarithmic dependence in n

36

�

�

�

�

Let’s keep it simple

Linear Regression

• Examples (xt, yt)

• Linear hypothesis w

• Predicts with ŷt = w · xt

37

�

�

�

�

A hard problem?

Hadamard Matrix:

→ +1 +1 +1 +1

instances → +1 −1 +1 −1

→ +1 +1 −1 −1

→ +1 −1 −1 +1

↑ ↑ ↑ ↑
targets

• n instances and n targets

• Instances are orthogonal

• Target weight vectors are units

38�

�

�

�

Without embeddings I

Any linear combination of k training instances predicts zero on all
n − k test instances [LLW95,KWA97]

So loss 1 on n − k of the n instances

Average square loss over all n instances is ≥ 1 − k
n

n = 1024 lg(n) = 10

39

�

�

�

�

Without embeddings II

Theorem
For any linear combination of k rows of the n-dimensional
Hadamard matrix and any of the n targets

the average square loss over all n instances is

≥ 1 − k

n

40

�

�

�

�

Spiffing it up

Embed instance into a feature space
φ : Rn → Rm

φ(x1, x2) = (sin(x1)︸ ︷︷ ︸
x′
1

, x2︸︷︷︸
x′
2

)

41

�

�

�

�

The Kernel Trick [BGV92]

If w linear combination of expanded instances, then

ŷ =
∑

t

αt φ(xt)︸ ︷︷ ︸
w

· φ(x) =
∑

t

αt φ(xt) · φ(x)︸ ︷︷ ︸
K(xt,x)

Kernel function K(xt, x) often efficient to compute

φ((x1, . . . , xn)︸ ︷︷ ︸
n

) = (1, . . . , xi, . . . , xixj . . . , xixjxk . . .)︸ ︷︷ ︸
2n products

Kernel magic

K(x, z) = φ(x) · φ(z) =
∑

I⊆1..n

∏
i∈I

xi

∏
i∈I

zi︸ ︷︷ ︸
O(2n) time

=
n∏

i=1

(1 + xizi)︸ ︷︷ ︸
O(n) time

42�

�

�

�

Good news

Many of our favorite algorithms can be “kernelized”:

Linear Least Squares, Widrow-Hoff, Support Vector Machines,
PCA, Simplex Algorithm, ...

Kernel Trick

• Weight vector linear combination of embedded instances

• Individual features never accessed

43

�

�

�

�

Linear combinations ?

Representer Theorem: [KW71]

w = arginf
w′

(
||w′||2 + η

∑
t

(w′ · φ(xt) − yt)2
)

Solution w linear combination of the φ(xt)

Rotation invariance: [KWA97]

Any algorithm whose predictions are not affected by rotating the
instances in feature space
must predict with linear combination of embedded instances

Sufficient conditions!

44

�

�

�

�

Linear or non-linear ?

• We give a problem for which kernel algorithms behave like
linear algorithms

• Embeddings don’t help

:-(

45

�

�

�

�

Main Result

Theorem

• No matter how the instances are embedded

• No matter what k training instances chosen by the learner

• No matter what linear combination used

For one of the targets
average square loss on all n instances is 1 − k

n

46�

�

�

�

Proof idea

• Use SVD spectrum

• After k instances weight space has rank k

and only k singular values can be ”captured”

Hadamard Random

Avg. square loss ≥ 1
n2

n∑
i=k+1

s2
i

= 1 − k
n

47

�

�

�

�

Additional Constraints

wi ≥ 0 and
n∑

i=1

wi = 1

Problem matrix

−1 +1 −1 +1 −1 +1 −1 +1

−1 −1 +1 +1 −1 −1 +1 +1

−1 −1 −1 −1 +1 +1 +1 +1

• For above k instances, labeled by one of the 2k columns, only
consistent weight vector is unit identifying that column

• Weight space can have rank 2k

48

�

�

�

�

Effect?

Rows of random ±1 matrix labeled by first column

Left: components of shortest weight vector over time

Right: same but with additional constraints

49

�

�

�

�

Maintain additional constraints?

Use Exponentiated Gradient Algorithm [KW97]

Kernel methods w =
∑

t αtΦ(xt)

EG wj = exp
P

t αtΦ(xt)j /const

Now log weights linear combination of expanded instances

50�

�

�

�

Average Squared Error

EG kernel algs
ln(n)

k 1 − k
n and (1 − 1

n)k

51

�

�

�

�

Which constraints?

52

�

�

�

�

Incorporating side info

Kernel algorithms: none ≥ 1 − k/n
EG: wi ≥ 0 and

∑
i wi = 1 O(log n

k)

→ +1.001 +1.002 +1.003 +1.004

instances → +1.001 −1.002 +1.003 −1.004

→ +1.001 +1.002 −1.003 −1.004

→ +1.001 −1.002 −1.003 +1.004

↑ ↑ ↑ ↑
targets

Now target determined by any single example
Trivial algorithm beats EG

53

�

�

�

�

Which matrix?

Kernel matrix dot products of instances

Problem matrix instances as rows - targets as columns

• If eigen-spectrum of kernel matrix has heavy tail
then kernel not useful

– Picked wrong kernel

– Problem too hard

• If svd-spectrum of problem matrix has heavy tail
then problem not learnable

We showed:

• Hadamard problem matrix has heavy tail

• Adding random features makes tail of kernel matrix heavy

54�

�

�

�

Questions

Gave problem that cannot be learned by kernel base algs

• What is the optimal kernal for a given problem?

• What is the hard problem for multiplicative updates?

• Can multiplicative updates be kernalized?
Some cases are given by [TW]

• Can entropy regularization be replaced by || ||22 regularization
plus non-negativity and total weight constraints?

55

�

�

�

�

Content of this tutorial

• P I: Introduction to Online Learning

– The Learning setting

– Predicting as good as the best expert

– Predicting as good as the best linear combination of experts

• P II: Bregman divergences and Loss bounds

– Introduction to Bregman divergences

– Relative loss bounds for the linear case

– Nonlinear case & matching losses

– Duality and relation to exponential families

– On-line algorithms motivated by game theory

• P III: on-line to batch conversion, applications

– Simple conversions

– Caching and the disk spin down problem

– Other applications and conclusion

Goal: How can we prove relative loss bounds?

56

�

�

�

�

Bregman Divergences [Br,CL,Cs]

For any differentiable convex function F

ΔF (w̃, w) = F (w̃) − F (w) − (w̃ − w) · ∇wF (w)︸ ︷︷ ︸
f(w)

= F (w̃) − supporting hyperplane

through (w, F (w))

9>>=
>>; ΔF (ew, w)

F (w) − (ew− w) · f(w)
w ew

F (ew)

57

�

�

�

�

Bregman Divergences: Simple Properties

1. ΔF (w̃, w) is convex in w̃

2. ΔF (w̃, w) ≥ 0
If F convex equality holds iff w̃ = w

3. Usually not symmetric: ΔF (w̃, w) �= ΔF (w, w̃)

4. Linearity (for a ≥ 0):
ΔF+a H(w̃, w) = ΔF (w̃, w) + a ΔH(w̃, w)

5. Unaffected by linear terms (a ∈ R, b ∈ Rn):
Δ

H+afw+b(w̃, w) = ΔH(w̃, w)

58�

�

�

�

Bregman Divergences: more properties

6. ∇fwΔF (w̃, w)

= ∇F (w̃) −∇fw(w̃∇wF (w))

= f(w̃) − f(w)

7. ΔF (w1, w2) + ΔF (w2, w3)

= F (w1) − F (w2) − (w1 − w2)f(w2)

F (w2) − F (w3) − (w2 − w3)f(w3)

= ΔF (w1, w3) + (w1 − w2) · (f(w3) − f(w2))

59

�

�

�

�

A Pythagorean Theorem [Br,Cs,A,HW]

u

w∗
w w∗ is projection of w onto convex

set W w.r.t. Bregman divergence
ΔF :

w∗ = argmin
u∈W

ΔF (u, w)

Theorem:
ΔF (u, w) ≥ ΔF (u, w∗) + ΔF (w∗, w)

60

�

�

�

�

Examples

Squared Euclidean Distance

F (w) = ||w||22/2

f(w) = w

ΔF (w̃, w) = ||w̃||22/2 − ||w||22/2 − (w̃ − w) · w
= ||w̃ − w||22/2

(Unnormalized) Relative Entropy

F (w) =
∑

i

(wi lnwi − wi)

f(w) = lnw

ΔF (w̃, w) =
∑

i

(
w̃i ln

w̃i

wi
+ wi − w̃i

)

61

�

�

�

�

Examples-2 [GLS,GL]

p-norm Algs (q is dual to p: 1
p + 1

q = 1)

F (w) =
1
2
||w||2q

f(w) = ∇1
2
||w||2q

ΔF (w̃, w) =
1
2
||w̃||2q +

1
2
||w||2q − w̃ · f(w)

When p = q = 2 this reduces to squared Euclidean distance
(Widrow-Hoff).

62�

�

�

�

Examples-3

Burg entropy

F (w) =
∑

i

− lnwi

f(w) = − 1
w

ΔF (w̃, w) =
∑

i

(
− ln

w̃i

wi
+

w̃i

wi

)
− n

63

�

�

�

�

Examples-4: div. between density matrices

Umegaki Divergence

F (W) = tr (WlnW − W)

f(W) = lnW

ΔF (W̃,W) = tr
(
W̃(ln W̃ − lnW) + W − W̃

)
LogDet Divergence

F (W) = − ln |W|

f(W) = W−1

ΔF (W̃,W) = − ln
|W̃|
|W|) + tr(W̃W−1) − n

64

�

�

�

�

General Motivation of Updates [KW]

Trade-off between two term:

wt+1 = argmin
w

(ΔF (w, wt)︸ ︷︷ ︸
weight domain

+ ηt Lt(w)︸ ︷︷ ︸
label domain

)

ΔF (w, wt) is “regularization term” and serves as measure of
progress in the analysis.

When loss L is convex (in w)

∇w(ΔF (w, wt) + ηtLt(w)) = 0

iff
f(w) − f(wt) + ηt ∇Lt(w)︸ ︷︷ ︸

≈∇Lt(wt)

= 0

⇒ wt+1 = f−1 (f(wt) − ηt∇Lt(wt))

65

�

�

�

�

Quadratic Loss

Lt(w) = (yt − w · xt)2/2

wt = (−3/2, 1)

xt = (1,−0.5)

yt = 1

66�

�

�

�

Divergence: Euclidean Distance Squared

ΔF (w, wt) = ‖w − wt‖2
2/2

wt = (−3/2, 1)

xt = (1,−0.5)

yt = 1

67

�

�

�

�

Loss + η Divergence

ΔF (w, wt) = ‖w − wt‖2
2/2

wt = (−3/2, 1)

xt = (1,−0.5)

yt = 1

η = 0.2

68

�

�

�

�

Divergence: 10-norm algorithm divergence

ΔF (w, wt) = ∇ 1
2‖w‖2

q

wt = (−3/2, 1)

xt = (1,−0.5)

yt = 1

69

�

�

�

�

Loss + η Divergence

ΔF (w, wt) = ‖w − wt‖2
2/2

wt = (−3/2, 1)

xt = (1,−0.5)

yt = 1

η = 0.2

70�

�

�

�

How to prove relative loss bounds?

Loss: Lt(w) = L((xt, yt), w) convex in w

Divergence: ΔF (u, w) = F (u) − F (w) − (u − w) · f(w)

Update: f(wt+1) − f(wt) = −η∇wLt(wt)

Lt(u)

convexity︷︸︸︷
≥ Lt(wt) + (u − wt) · ∇wLt(wt)︸ ︷︷ ︸

update

= Lt(wt) − 1
η

(u − wt) · (f(wt+1) − f(wt))︸ ︷︷ ︸
prop. 7 of ΔF

= Lt(wt) +
1
η

(ΔF (u, wt+1) − ΔF (u, wt) − ΔF (wt, wt+1))

71

�

�

�

�

First step: Teleskoping

Summing over t [WJ,KW]∑
t

Lt(wt) ≤
∑

t

Lt(u) +
1
η

∑
t

(
ΔF (u, wt) − ΔF (u, wt+1)

+ΔF (wt, wt+1)
)

≤
∑

t

Lt(u) +
1
η

(
ΔF (u, w1) − ΔF (u, wT+1)︸ ︷︷ ︸

≥0

)

+
1
η

∑
t

ΔF (wt, wt+1)

≤
∑

t

Lt(u) +
1
η
ΔF (u, w1) +

1
η

∑
t

ΔF (wt, wt+1)

Any convex loss and any Bregman divergence!

72

�

�

�

�

Second step: Relate ΔF (wt, wt+1) to loss Lt(wt)

Loss & divergence are dependent

Get ΔF (wt, wt+1) ≤ const. Lt(wt)

Then solve for
∑

t Lt(wt)

Yield bounds of the form∑
t

Lt(wt) ≤ a
∑

t

Lt(u) + b ΔF (u, w1)

a, b constants, a > 1.

Regret bounds (a = 1):

time changing η, subtler analysis [AG]

73

�

�

�

�

Bounds for Linear Regression with Square Loss

Gradient Descent∑
t

Lt(wt) ≤ (1 + c)
∑

t

Lt(u) +
1 + c

c
X2

2 U2
2

||xt||2 ≤ X2, ||u||2 ≤ U2, c > 0, η = f(c, X2)

Scaled Exponentiated Gradient∑
t

Lt(wt) ≤ (1 + c)
∑

t

Lt(u) +
1 + c

c
lnn X2

∞U2
1

||xt||∞ ≤ X∞, ||u||1 ≤ U1, c > 0, η = f(c, X∞)

p-norm Algorithm∑
t

Lt(wt) ≤ (1 + c)
∑

t

Lt(u) +
1 + c

c
(p − 1) X2

p U2
q

||xt||p ≤ Xp, ||u||q ≤ Uq, c > 0, η = f(c, X∞)

74�

�

�

�

Nonlinear Regression

w

x

ŷ = h(w · x)

h

• Sigmoid function h(z) = 1
1+e−z

• For a set of examples (x1, y1), . . . , (xT , yT)
total loss

∑T
t=1 h(w · x) − yt)2/2

can have exponentially many minima
in weight space [Bu,AHW]

75

�

�

�

�

-14

-12

-10

-8

-6

-4

-2

0

log w1

-14

-12

-10

-8

-6

-4

-2

0

log w2

0.48
0.5

0.52
0.54
0.56
0.58
0.6

0.62

Want loss that is convex in w

76

�

�

�

�

Bregman Div. Lead to Good Loss Function

h−1(y) w · x

y

h(w · x)

ΔH(w · x, h−1(y))

h(z)

z

(h = ∇H)

∫ w·x

h−1(y)

(h(z) − y) dz = H(w · x) − H(h−1(y)) − (w · x − h−1(y)) y

= ΔH(w · x, h−1(y))

77

�

�

�

�

Use ΔH(w · x, h−1(y)) as loss of w on (x, y)

Called matching loss for h [AHW,HKW]

Matching loss is convex in w

transfer f.

h(z)

H(z) match. loss

dH(w · x, h−1(y)

z 1
2z2

1
2 (w · x − y)2

square loss

ez

1+ez ln(1 + ez)

ln(1 + ew·x) − yw · x
+y ln y + (1 − y) ln(1 − y)

logistic loss

sign(z) |z| max{0,−yw · x}
hinge loss

78�

�

�

�

Idea behind the matching loss

If transfer function and loss match, then

∇wΔH(w · x, h−1(y)) = h(w · x) − y

Then update has simple form:

f(wt+1) = f(wt) − ηt(h(wt · x) − yt)xt

This can be exploited in proofs

But not absolutely necessary
One only needs convexity of L(h(w · x), y) in w [Ce]

79

�

�

�

�

Sigmoid in the Limit

For transfer function h(z) = sign(z)

w.x

+1

-1

H(z) = |z|
Matching loss is hinge loss [GW]

y w · x, y = ±1
0

HL(w · x, h−1(y)) = max{0,−y w · x}

Convex in w but not differentiable

80

�

�

�

�

Motivation of linear threshold algs

Gradient descent
with Perceptron

Hinge Loss

Expon. gradient Normalized
with Winnow

Hinge Loss

Known linear threshold algorithms for ±1-classification case are
gradient-based algorithms with hinge loss

81

�

�

�

�

Perceptron

wt+1

= argmin
w

(||w − wt||2/2 + η HL(w · xt, g
−1(yt))

)

= wt − η (sign(wt+1 · xt)) − yt) xt

≈ wt − η (sign(wt · xt)︸ ︷︷ ︸
ŷt

−yt) xt

82�

�

�

�

Normalized Winnow

wt+1

= argmin
w

(
n∑

i=1

wi ln
wi

wt,i
+ η HL(w · xt, g

−1(yt))

)

= wt,i e−η (sign(w·xt)−yt) xt.i/ normalization

≈ wt,i e

−η (sign(wt · xt)︸ ︷︷ ︸
ŷt

−yt) xt.i

/ normalization

83

�

�

�

�

Trade-off between two divergences [KW]

wt+1 = argmin
w

(ΔF (w, wt)︸ ︷︷ ︸
parameter

divergence

+ ηt ΔH(w · xt, h
−1(yt)︸ ︷︷ ︸

matching

loss divergence

)

Both divergences are convex in w

wt+1 = f−1 (f(wt) − ηt(h(wt · xt) − yt)xt)

Generalization of the “delta”-rule

84

�

�

�

�

Duality

Special case:

min
w

ΔF (w, wt) + ΔH(xt · w, h−1(yt))

= −min
α

ΔG(α + yt, h(0)) + ΔF (f(wt) − αxt, f(0)) + const.

General:

min
w

ΔF (w + μ, f−1(φ)︸ ︷︷ ︸
wt

) + ΔH(Xw + ν, h−1(y))

= −min
α

ΔG(α + y, h(ν)) + ΔF (φ − X�α, f(μ)) + const.

where F and F are convex conjugate functions:

F(x) = sup
y

x · y − F (y) = x · (∇F)−1(x) − F ((∇F)−1(x))

85

�

�

�

�

Projections onto Hyperplanes

wt+1 = argmin
w

(ΔF (w, wt) + η(w · xt − yt)2)

When η is large then wt+1 is projection of wt onto plane w ·xt = yt

wt+1 = argmin
{w : wt·xt=yt}

ΔF (w, wt)

86�

�

�

�

Relation to Boosting

The AdaBoost update of the probability vector wt:

w
(t+1)
i = w

(t)
i exp(−αtyiht(xi))

Is a projection w.r.t. divergence [CKW,La,KW,CSS]

ΔF (w, wt) =
∑

i

wi ln
wi

wt,i

Such that the weighted training error of ht w.r.t. w(t+1) is 1
2

(“diversification” of Boosting mentioned in Ron Meir’s talk)

87

�

�

�

�

wi(α) = w
(t)
i exp(−αyiht(xi)) α = argmin

α′

∑
i

wi(α′)

88

�

�

�

�
89

�

�

�

�

Bregman divergences and exponential families?

• Exponential family of distributions

• Inherent duality

wt+1 = f−1 (f(wt) − η∇Lt(wt))

primal param. dual param.

wt
f−→ f(wt)

wt+1
f−1

←− −η∇Lt(wt)

90�

�

�

�

Exponential Family of Distributions

• Parametric density functions

PG(x|θ) = eθ·x−G(θ) P0(x)

• θ and x vectors in Rd

• Cumulant function G(θ) assures normalization

G(θ) = ln
∫

eθ·x P0(x) dx

• G(θ) is convex function on convex set Θ ⊆ Rd

• G characterizes members of the family

• θ is natural parameter

91

�

�

�

�

• Expectation parameter

μ =
∫
x

xPG(x|θ)dx = Eθ(x) = g(θ)

where g(θ) = ∇θG(θ)

• Second convex function F (μ) on space g(Θ)

F (μ) = θ · μ − G(θ)

• G(θ) and F (μ) are convex conjugate functions

• Let f(μ) = ∇μF (μ)

• f(μ) = g−1(μ)

92

�

�

�

�

Primal & Dual Parameters

natural expectation

paramater parameter

θ

g−→
←−
f

μ

G(θ) F (μ)

• θ and μ are dual parameters

• Parameter transformations
g(θ) = μ and f(μ) = θ [A,BN]

93

�

�

�

�

Gaussian (unit variance)

P (x|θ) ∼ e−
1
2 (θ−x)2

= eθ·x− 1
2θ

2

e
1
2x

2

Cumulant function: G(θ) = 1
2θ2

Parameter transformations:
g(θ) = θ = μ and f(μ) = μ = θ

Dual convex function: F (μ) = θ · μ − G(θ)

= 1
2μ2

Square loss: Lt(θ) = 1
2 (θt − xt)2

94�

�

�

�

Bernoulli

Examples xt are coin flips in {0, 1}
P (x|μ) = μx(1 − μ)1−x

μ is the probability (expectation) of 1

Natural parameter: θ = ln μ
1−μ

P (x|θ) = exp
“
θx − ln(1 + eθ)

”
Cumulant function: G(θ) = ln(1 + eθ)

Parameter transformations:

μ = g(θ) =
eθ

1 + eθ
and θ = f(μ) = ln

μ

1 − μ

Dual function: F (μ) = μ ln μ + (1 − μ) ln(1 − μ)

Log loss: Lt(θ) = −xtθ + ln(1 + eθ)

= −xt ln μ − (1 − xt) ln(1 − μ)

95

�

�

�

�

Poisson

Examples xt are natural numbers in {0, 1, . . .}

P (x|μ) =
e−μμx

x!

μ is expectation of x

Natural parameter: θ = ln μ

P (x|θ) = exp
“
θx − eθ

” 1

x!

Cumulant function: G(θ) = eθ

Parameter transformations:

μ = g(θ) = eθ and θ = f(μ) = ln μ

Dual function: F (μ) = μ ln μ − μ

Loss: Lt(θ) = −xtθ + eθ + ln xt!

= −xt ln μ + μ + ln xt!

96

�

�

�

�

Bregman Div. as Rel. Ent. between Distributions

Let P (x|θ) and P (x|θ̃) denote two distributions with cumulant
function G

ΔG(θ̃, θ) =
∫
x

PG(x|θ)ln
PG(x|θ)

PG(x|θ̃)
dx

=
∫
x

PG(x|θ)(θ · x − G(θ) − θ · x + G(θ̃))dx

= G(θ̃) − G(θ) − (θ̃ − θ) · (
∫
x

PG(x|θ)xdx)

= G(θ̃) − G(θ) − (θ̃ − θ) · μ
F (μ)=θ·μ−G(θ)

= F (μ) − F (μ̃) − (μ − μ̃) · θ̃
= ΔF (μ, μ̃) [A, BN, AW]

97

�

�

�

�

Area unchanged When Slide Flipped

θ̃

μ̃

μ

ΔG(θ, θ̃) = ΔF (μ̃, μ)

g(τ)

τ

98�

�

�

�

ΔG(θ, θ̃) = G(θ) − G(θ̃) − (θ − θ̃) · g(θ̃)

=
∫ θ

eθ
(g(τ) − g(θ̃)) · dτ

flip
=

∫ eμ

μ
(f(σ) − f(μ)) · dσ

= F (μ̃) − F (μ) − (μ̃ − μ) · f(μ)

= ΔF (μ̃, μ)

99

�

�

�

�

Dual divergence for Bernoulli

G(θ) = ln(1 + eθ) F (μ) = μ lnμ + (1 − μ) ln(1 − μ)

g(θ) = eθ

1+eθ = μ f(μ) = ln μ
1−μ = θ

ΔG(θ̃, θ) = ln(1 + e
eθ) − ln(1 + eθ) − (θ̃ − θ)

eθ

1 + eθ

ΔF (μ, μ̃) = μ ln
μ

μ̃
+ (1 − μ) ln

1 − μ

1 − μ̃

Binary relative entropy

Sum of binary relative entropies is parameter divergence
for BEG

100

�

�

�

�

Dual divergence for Poisson

G(θ) = eθ F (μ) = μ lnμ − μ

g(θ) = eθ = μ f(μ) = lnμ = θ

ΔG(θ̃, θ) = e
eθ − eθ − (θ̃ − θ)eθ

ΔF (μ, μ̃) = μ ln
μ

μ̃
+ μ̃ − μ

Unnormalized relative entropy

Sum of unnormalized relative entropies is parameter for
UEG (e.g. Winnow)

101

�

�

�

�

Dual matching loss for sigmoid transfer func.

H(z) = ln(1 + ez) K(r) = r ln r + (1 − r) ln(1 − r)

h(z) = ez

1+ez = r k(r) = ln r
1−r = z

K dual to H and k = h−1

ΔH(w · x, h−1(y))

= ln(1 + ew·x) − yw · x + y ln y + (1 − y) ln(1 − y)

By duality logistic loss is same as entropic loss

ΔK(y, h(w · x))

= y ln
y

h(w · x)
+ (1 − y) ln

1 − y

1 − h(w · x)

Matching loss for logistic transfer function

102�

�

�

�

Example: Gaussian density estimation

θ

•

•

•

•

•

•

•
•

•
••

•

•

•

•

•

•

•

x

Off-line versus on-line

• Loss on example xt

Lt(θ) = − lnP (xt|θ) =
1
2
(xt − θ)2

103

�

�

�

�

Derivation of Updates

• Want to bound
T∑

t=1

Lt(θt) − inf
θ

L1..T (θ)

• Off-line algorithm has all T examples

{x1, x2, . . . ,xT }

• Setup for choosing best parameter setting

θB = argmin
θ

(η−1
B ΔG(θ, θ1)

divergence

to initial

+ L1..T (θ)

total

loss

)

Here η−1
B > 0 is a tradeoff parameter

104

�

�

�

�

On-line Algorithm [AW]

• In trial t, the first t examples

{x1, x2, . . . ,xt}
have been presented

• Motivation for on-line parameter update:
do as well as best off-line algorithm up to trial t

• At end of trial t algorithm minimizes

θt+1 = argmin
θ

(η−1
1 ΔG(θ, θ1)

divergence

to initial

+ L1..t(θ)

loss

so far

)

Tradeoff parameter η−1
1 ≥ 0

105

�

�

�

�

Alternate Motivation of Same On-Line Update

θt+1 = argmin
θ

(η−1
t ΔG(θ, θt)

divergence to last

+ Lt(θ)

current loss

)

where ηt =
1

η−1
1 + t − 1

Parameter Updates

Off-line: μB =
η−1

B μ1 +
∑T

t=1 xt

η−1
B + T

On-Line in trial t: μt+1 =
η−1
1 μ1 +

∑t
q=1 xq

η−1
1 + t

= μt − ηt+1(μt − xt)

θt+1 = g−1 (g(θt) − ηt+1(μt − xt))

106�

�

�

�

• On-line algorithm has freedom to use a tradeoff parameter η−1
1

that could be different from the off-line parameter η−1
B

• Two choices for η−1
1

Case η−1
1 = η−1

B :
Incremental Off-Line Algorithm

Case η−1
1 = η−1

B + 1:
Forward Algorithm [V]

107

�

�

�

�

Shrinkage Towards Initial

μB = xT − η−1
B (η−1

B + T)−1(xT − μ1)

where xT =
PT

t=1 xt

T

Shrinkage factor η−1
B (η−1

B + T)−1

108

�

�

�

�

Off-line
Forward

on-line

Gauss

μ1 = 0, η−1
B = 0

μB =
PT

t=1 xt

T μt =
Pt−1

q=1 xq

t−1+1

Bernoulli

μ1 = 1
2 , η−1

B = 0
μB =

PT
t=1 xt

T μt =
1
2+

Pt−1
q=1 xq

t−1+1 [KT]

109

�

�

�

�

Key Lemma [AW]

For any example xt and any θ ∈ Θ

Lt(θt)

loss of

algorithm

− Lt(θ)

loss of

comparator θ

= η−1
t ΔG(θ, θt)

divergence

to last par.

− η−1
t+1 ΔG(θ, θt+1)

divergence

to updated par.

+ η−1
t+1ΔG(θt, θt+1)

cost of

update

110�

�

�

�

Main Theorem

For any sequence of examples and any θ ∈ ΘPT
t=1 Lt(θt)

total loss of

algorithm

− L1..T (θ)

total loss of

comparator θ

= η−1
1 ΔG(θ, θ1)

divergence

to initial par.

− η−1
T+1 ΔG(θ, θT+1)

divergence

to last par.

+
PT

t=1 η−1
t+1ΔG(θt, θt+1)

cost of all

updates

Proven by simply summing the Key Lemma

111

�

�

�

�

Bounds for the Forward Algorithm

TX
t=1

Lt(θt) − inf
θ

L1..T (θ)
Gauss

=

TX
t=1

ηt x2
t /2 −

T−1X
t=1

ηt μ2
t+1/2 [AW]

≤ X2

2
ln(1 +

T

η−1
1 − 1

)

Bernoulli≤ 1

2
ln(T + 1) +

ln π

2
[Fr, XB, AW]

lin. regr.
≤ 1

2
Y 2n ln

„
1 +

TX2

a

«
[V, Fo, AW]

X2 = maxT
t=1 x2

t , Y = maxT
t=1 yt, wt =

aI +

tP
q=1

xqx
′
q

!−1
t−1P
q=1

xqyq

112

�

�

�

�

Why Bregman divergences?

• No need to check whether there is an underlying exponential
family

• More general than exponential families

• As parameter divergence and matching loss

• Used in motivation and analysis of updates

• When η → ∞, updates morph into Bregman projection

• Generalized Pythagorean Theorem for Bregman projections

113

�

�

�

�

General setup of on-line learning

• We hide some information from the learner

• The relative loss bound quantifies the price for hiding the
information

• So far the future examples are hidden
Off-line algorithm knows all examples
On-line algorithm knows past examples

114�

�

�

�

Minimax Algorithm for T Trials

Learner against adversary

inf
μ1

sup
x1

inf
μ2

sup
x2

inf
μ3

sup
x3

. . . inf
μT

sup
xT

∑T
t=1

1
2 (μt − xt)2

total loss of

on-line

algorithm

− infμ
∑T

t=1
1
2 (μ − xt)2

total loss of

off-line

algorithm

Instances must be bounded: ||xt||2 ≤ X

Minimax algorithm usually intractable

Gaussian and Bernoulli are exceptions [TW,Sh]

115

�

�

�

�

Gaussian

Forward Alg. μt =
Pt−1

q=1 xq

t

Bound 1
2X2(1 + lnT)

Minimax Alg. μt =
Pt−1

q=1 xq

t+ln T−ln(t+O(ln T))

Bound 1
2X2(lnT− ln lnT) + o(1)

Minimax alg. needs to know T

116

�

�

�

�

Last-step Minimax

Assumes that current trial is last trial [Fo,TW]

μt = arginf
μ

sup
xt

t∑
q=1

Lq(μq) − inf
μ

L1..t(μ)

= arginf
μ

sup
xt

Lt(μt) − inf
μ

L1..t(μ)

For Gaussian and linear regression
Last-step Minimax is same as Forward Alg.

117

�

�

�

�

Last-step Minimax: Bernoulli

Forward alg:

μt =
s + 1

2

t − 1 + 1
, where s =

t−1∑
q=1

xq

Last-step:

μt =
(s + 1)(s + 1)(t − s − 1)t−s−1

ss(t − s)t−s + (s + 1)s+1(t − s − 1)t−s−1

Worst-case regret bounds: ln(T + 1) + c

Forward: c = ln π
2 Last step: c = 1

2

118�

�

�

�

Synopsis of methods

Game theoretic

• Slightly better bounds

• Harder to find

Bregman divergences

• Closer to Bayes and standard convex optimization

119

�

�

�

�

Content of this tutorial

• P I: Introduction to Online Learning

– The Learning setting

– Predicting as good as the best expert

– Predicting as good as the best linear combination of experts

• P II: Bregman divergences and Loss bounds

– Introduction to Bregman divergences

– Relative loss bounds for the linear case

– Nonlinear case & matching losses

– Duality and relation to exponential families

– On-line algorithms motivated by game theory

• P III: on-line to batch conversion, applications

– Simple conversions

– Caching and the disk spin down problem

– Other applications and conclusion

Goal: How can we prove relative loss bounds?

120

�

�

�

�

Simple conversions

Worst case loss bounds for on-line algs
are converted to
algorithms with good performance bounds in the i.i.d. case

• Expected loss bounds [HW,CB+,KW]

• Tail bounds [CCG]

121

�

�

�

�

Expected loss bounds [HW]

Loss function L : R2 → R

S = (x1, y1), . . . , (xT , yT) ∼ DT

Instantaneous loss of hypothesis h w.r.t. distribution D

InstLoss(h, D) = Ee∼D L(h, e)

122�

�

�

�

ES∼DT (TotLoss(A, S))

= E(e1,...,eT)∼DT

(
T∑

t=1

L(A((e1, . . . , et−1)), et)

)

=
T∑

t=1

E(e1,...,et−1)∼Dt−1 (Ee∼D (L(A((e1, . . . , et−1)), e)))

=
T∑

t=1

E(e1,...,et−1)∼Dt−1 (InstLoss(A(e1, . . . , et−1), D)))

So expected total loss is total instaneous loss
...

Run
A

Pick one at random

T+1 hyp’sX X

1 2 T+1

123

�

�

�

�

• Choose hi uniformly at random from the T + 1 hypotheses

• On new instance x predict with hi(x)

• Instanteneous loss of this algorithm is expected total loss of
original algorithm over T + 1

• Applied to the Perceptron Algorithm [FS]

124

�

�

�

�

Tail bound [CCG]

Convex Loss L : R2 → [0, Lmax]
...

Run
A

T+1 hyp’sX X

1 2 T+1

h(x) =
1
T

T∑
t=1

ht(x)

If total worst case loss is M , then with probability 1 − δ

errD(h) ≤ M

T
+ Lmax

√
2
T

log
1
δ

125

�

�

�

�

Application: Adaptive Channel Equalization

- Online Linear Regression Problem:
⇒ Find w such that (y − w · x)2 is minimized

- Common approach:

wt+1 = wt − η(y − wt · xt)xt

- But: Many coefficients are zero, or close to zero [MSWJ]
⇒ Use Unnormalized Exponentiated Gradient update or the

approximate version

wt+1 = wt (1 − η(y − wt · xt)xt)

126�

�

�

�

Application: Caching [GBW]

• Whenever small, fast memory
and larger, slower secondary memory

• Keep objects in fast memory
which are likely to be needed again soon

– Hit if requested object resides in cache

– Miss Otherwise

127

�

�

�

�

Caching Policies

• Decides which objects to discard
to make room for new requests

• 7 common policies: LRU, RAND, FIFO, LIFO, LFU and MFU

• 5 fancy recent policies: SIZE, GDS, GD∗, GDSF, LFUDA

• Criteria:

– Recency and frequency of access

– Size of objects

– Cost of fetching object from secondary memory

• De facto standard: LRU

128

�

�

�

�

Which Policy to Choose?

• For which situation?

– Disk access on PC

– Web proxy access via browser

– File server on local network

– Middle of the night - during backup

– Application as well as time dependent

• Choosing one is suboptimal

129

�

�

�

�

Characteristics Vary with Time

130�

�

�

�

Best Policy Varies with time

131

�

�

�

�

Randomly Permuted Request Stream

132

�

�

�

�

Want “Adaptive” Policy

• Good compared to off-line comparator

– BestFixed: a posteriori best of 12 policies on entire
request stream

– BestRefetching(R):
minimum number of misses with at most R refetches
in any sequence of switching policies

133

�

�

�

�

Refetches & Policy Switches

Off-line comparator: All sequences of the form

We plot miss rate v.s. refetches:

134�

�

�

�

BestRefetching(R)

Dynamic programming in time O(RN2T)

135

�

�

�

�

Goal for On-line policies

• Beat BestFixed

• Get close to BestRefetching

• Reduce I/O’s and end-user latency

136

�

�

�

�

Score Card

137

�

�

�

�

Key Idea: Virtual Caches

• Simulates a cache for each baseline policy

• Per object keep only (ID, size and calculated priority)

• Maintenance cost negligible

• Observe current miss rates of all 12

• Virtual Caches reside in the total cache space:

Size(real cache) = Size(full cache) −
12∑

i=1

Size(VCi).

138�

�

�

�

Virtual Caches

139

�

�

�

�

Window Algorithm

• Real cache governed by currently best policy

• Best means lowest number of hits in window of W (say 300)
requests

• Works reasonably well - but

– Hard to tune the window size

– O(NW) Additional space required for N policies.

140

�

�

�

�

Better Master Policy

• Use Expert Framework from On-line learning

• Maintain one weight wi for each base policy / expert

• wi is estimate of current relative performance of policy i

• Weights updated after each request:

– Loss update punishes policies quickly that score misses

– Share update [LW94,HW98,BW01]
Keeps weights of poor policies from becoming too small
Helps recovery

141

�

�

�

�

Fixed Share to Uniform Past

Loss Update:

w′
t,i =

wt,iβ
misst,i

normaliz.
, β ∈ (0, 1)

Share Update:

wt+1 = (1 − α) w′
t + α rt−1,

where rt−1 =
t−1∑
q=1

w′
q/(t − 1)

• Prevents weights that did well in past from becoming too small
Helps when these weights need to recover

142�

�

�

�

Weights of baseline policies under FSUP

143

�

�

�

�

Digression

More on On-line Learning

and Share Updates

144

�

�

�

�

On-line Learning

experts

E1 E2 E3 En

predic

tion
true

label loss

day 1 1 1 0 0 0 1 1

day 2 1 0 1 0 1 0 1

day 3 0 1 1 1 1 1 0

day t xt,1 xt,2 xt,3 xt,n ŷt yt (yt − ŷt)2

• Choose comparison class of predictors (experts)

• Master Algorithm combines predictions of experts

• xt vector of expert’s predictions

145

�

�

�

�

Protocol of Master Algorithm

Loop for each trial t = 1, .., T

Get next instance xt

Make prediction ŷt

Get label yt (“true outcome”)
Incur loss L(ŷt, yt)

• No statistical assumptions on the data

Goal

• Do well compared to the best off-line comparator / best expert

146�

�

�

�

What kind of performance can we expect ?

- L1..T,A be the total loss of algorithm A

- L1..T,i be the total loss of i-th expert Ei

• Form of bounds

∀S : L1..T,A ≤ min
i

⎛⎜⎝L1..T,i + c log n︸ ︷︷ ︸
bits

⎞⎟⎠
where c is constant

• Bounds the loss of the algorithm relative to the loss of best
expert

147

�

�

�

�

Algorithm that Achieves Bound

• Master algorithm predicts with weighted average

ŷt = wt · xt

• The weights are updated according to the Loss Update

wt+1,i :=
wt,i e−η Lt,i

normaliz.
, e−η = β

where Lt,i is loss of expert i in trial t

→ Weighted Majority Algorithm [LW89]

→ Generalized by Vovk [Vovk90]

148

�

�

�

�

What if Comparator Changes with Time ?

Expert 7 20 4 51

• Off-line algorithm partitions sequence into sections
and chooses best expert in each section

• Goal:
Do well compared to the best off-line partition

• Problem:
Loss Update learns too well
and does not recover fast enough

149

�

�

�

�

Mixing Update

• Predict ŷt = wt · xt

• Loss Update w′
t,i = wt,ie

−ηLt,i

normaliz.
• Mixing Update

wt+1 =
t∑

q=0

βt+1,qw′
q, where

t∑
q=0

βt+1 = 1

• Mixing schemes

�
210 t-1 t... q0

.
�

1

1-α

α

βt+1(q)

�
210 t-1 t... q0

.
�

1

1-α

α/t

βt+1(q)

�
210 t-1 t... q0

.
�

1

1-α

∝ α
t−q

βt+1(q)

FS to Start Vector FS to Uniform Past FS to Decaying Past

150�

�

�

�

Total Loss Plots

0

10

20

30

40

50

60

70

80

90

 1 2 1 2 3 1 2

To
ta

l L
os

s

Best Expert

Typical Expert
Static
FS Start
FS Decaying Past
Best Partition

• T = 1400 trials, n = 20000 experts

• k = 6 shifts (every 200 trials)

151

�

�

�

�

Weights of Fixed Share to Start Vector Alg.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 1 2 1 2 3 1 2
W

ei
gh

t
Best Expert

1 2 3

152

�

�

�

�

Weights of Fixed Share to Decaying Past Alg.

• Improved recovery when expert used before

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 1 2 1 2 3 1 2

W
ei

gh
t

Best Expert

1 2 3

153

�

�

�

�

Fixed Share to Decaying Past - Log Weights

• Past good experts remain at higher level

-14

-12

-10

-8

-6

-4

-2

0

 1 2 1 2 3 1 2

Lo
g

W
ei

gh
t

Best Expert

1
2

3
Typical

Max others

154�

�

�

�

More Experts Remembered

0

50

100

150

200

250

300

350

400

 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

To
ta

l L
os

s

Best Expert

Typical Expert
Static
FS Start
FS Decaying Past
Best Partition

• T = 6000 trials, n = 20000 experts

• k = 29 shifts (every 200 trials)

155

�

�

�

�

Fixed Share to Decaying Past - Log Weights

• Past good expert are cached

-14

-12

-10

-8

-6

-4

-2

0

 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Lo

g
W

ei
gh

t
Best Expert

1
2
3

4
5
6

7
8
9

10
Max others

156

�

�

�

�

Fixed Share to Start Vector - Log Weights

• No memory

-14

-12

-10

-8

-6

-4

-2

0

 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Lo
g

W
ei

gh
t

Best Expert

1
2
3

4
5
6

7
8
9

10
Max others

157

�

�

�

�

Relative Loss Bounds

• Always have the form

L1..T,A ≤ min
P

(L1..T,P + O(# of bits for P))

→ Boundaries are encoded twice

→ Off-line problem NP-complete

158�

�

�

�

Fixed Share to Decaying Past - Log Weights

-14

-12

-10

-8

-6

-4

-2

0

 1 2

Lo
g

W
ei

gh
t

Best Expert

ln(alpha/n)
1

2
Typical

Max others

• Larger alpha gives better long-term memory

159

�

�

�

�

Fixed Share to Start Vector - Log Weights

-14

-12

-10

-8

-6

-4

-2

0

 1 2
Lo

g
W

ei
gh

t
Best Expert

ln(alpha/n)
1

2
Typical

Max others

160

�

�

�

�

Memory from many short sections accumulates

• Fixed Share to Decaying Past - Log Weights

-14

-12

-10

-8

-6

-4

-2

0

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

Lo
g

W
ei

gh
t

Best Expert

ln(alpha/n)
1

2
Typical

Max others

161

�

�

�

�

Bigger memory

• Cycling thru 10 different short sections

-14

-12

-10

-8

-6

-4

-2

0

0 1600 3200 4800 6400 8000 9600 11200 12800 14400 16000 17600 19200 20800

L
og

 W
ei

gh
t

Trial

1
2
3

4
5
6

7
8
9

Max others

162�

�

�

�

Back to Caching

• Share-update crucial

• Fixed Share to Uniform Past cheap one of the best

• Bounds do not apply but we are using recovery properties

– parameter settings (α, β or η) not crucial

– fix at

β = 1/e α = 0.005

163

�

�

�

�

Master Policy Protocol

• Process request on virtual caches

• Apply Loss and Share Updates

• Process request on real cache

– based on combined weightings of all caches

• Refetch objects into real cache (if desired)

164

�

�

�

�

Virtual Cache Rankings

• Priorities induce ranks over virtually cached objects:

object o12 o7 o2 o22 o3 o6 o2 o15 o9

priority 31.2 30.2 24.1 17.1 9.3 8 4.1 2.5 1.2

rank 9 8 7 6 5 4 3 2 1

• o9 first discarded

• o12 last

165

�

�

�

�

Master Rank

• Master priority P constructed from
weights and ranks of virtual caches

P o =

⎧⎪⎨⎪⎩
∑

n:o∈VCn

wnrn,o if ∃n : o ∈ VCn

0 if ∀n : o /∈ VCn

• R is corresponding master rank

166�

�

�

�

Ideal Cache

• Highest ranked objects fill the ideal cache to capacity

• IdealCache =

167

�

�

�

�

Managing Real Cache: Instantaneous Rollover

• Keep RealCache = Ideal Cache
i.e. Refetch all o ∈ IdealCache − RealCache

• Too much refetching

168

�

�

�

�

Demand Rollover

• Lowest R-ranked objects are discarded
to make room for a new request

• No refetching

169

�

�

�

�

Compromise: Background Rollover

• Refetch objects
o ∈ IdealCache − RealCache
when system is idle

• Model idleness as Poisson process

– Draw d ∼ Pois(λ)

– Refetch (at most) d objects o ∈ IdealCache − RealCache

170�

�

�

�

Smart Refetching

• Most hits in real cache have high R-rank

• Refetch only top 40-60% of R-ranked objects

171

�

�

�

�

Experimental Results: Filesystem Data

Dataset: Work-Week User-Month Server-Month-LRU

(WWk) (UMo) (SMoLRU)

#Requests 138k 382k 48k

Cache size 900KB 2MB 4MB

%Skipped 6.5% 12.8% 15.7%

Compuls 0.020 0.015 0.152

LRU Miss Rate 0.166 0.076 0.870

BestFixed Pol / MR SIZE 0.055 GDS 0.075 GDSF 0.399

%<LRU 36.8% 54.7% 54.2%

CMU DFStrace

172

�

�

�

�

Demand Rollover “Tracks” best policy

173

�

�

�

�

WWk

174�

�

�

�

UMo

175

�

�

�

�

SMoLRU

176

�

�

�

�

Summary

• Demand Rollover is already as good or better than BestFixed

• Small amounts of refetching always beats Best Fixed

– 15-22% fewer misses than BestFixed

– 45-70% fewer misses than LRU

• Can be as good as BestRefetching

– always less I/O’s than LRU

– can result in less I/O than BestFixed

177

�

�

�

�

Conclusion

• Operating Systems have many parameter tweaking problems
suitable for on-line learning

• Previous work using same updates:

– Tuning time-out for spinning down disk of a PC [HLSS00]

– Load balancing between processors [BB97]

– Tracking with GPS

178�

�

�

�

Too expensive?

• Not for web caching and filesystem’s caching

• Not clear for paging

• Implement in Linux kernel

179

�

�

�

�

Two approaches

• Use existing caching strategies as experts

• Use set of fine-grained experts
from which all existing caching policies are built

• Machine Learners will get interested if there are realistic
benchmark data sets

180

�

�

�

�

Application: Disk Spin Down [HLSS]

Problem of adapt. spinning down hard disks in mobile computers

Common approach

• Fixed time-out (e.g. 2 min)

• Does not exploit changing usage patterns

181

�

�

�

�
0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0
50

10
0

15
0

20
0

Time (sec.)

P
er

io
d

(1
e8

 s
ec

.)

182�

�

�

�

Idea

• Use about 20 experts with different time-outs

• Apply shifting expert algorithm with mixing to decaying past

• Efficient but proofs don’t apply because on unusual loss
function

183

�

�

�

�

Which loss?

Costs for spinning up/down, running machine in idle mode, ...

L(“idle-time”, “time-out”) ∼ total energy consumed

184

�

�

�

�

Does it work?

Comparators:

• Best fixed idle time chosen in hindsight

• Optimal algorithm: Spin down if cost of next idle period
> spin down cost

Performance

• Better than best fixed

• Close to optimal

• Parameters easy to tune and algorithm very stable over a large
variety of data

• Better than other algorithms that provable have good
competitve ratios

185

�

�

�

�

Other Applications

• Calendar managing
Many features (sleeping experts) [Bl,FSSW]

• Text categorization [LSCP]
One attribute per word in text

• Spelling correction [Ro]

• Portfolio prediction [Co,CO,HSSW,BK]

• Boosting [Sc,Fr,SS]

• Load Balancing based on shifting expert algorithms [BB]

186

